QuickJS-ng项目中ThreadSanitizer支持的技术实现与挑战
ThreadSanitizer(TSan)是一种用于检测多线程程序中数据竞争的工具,能够帮助开发者发现并发编程中的潜在问题。在QuickJS-ng项目中,开发者尝试为其添加TSan支持时遇到了一些技术挑战,这些挑战主要围绕JavaScript原子操作的实现方式。
问题背景
在QuickJS-ng中实现TSan支持时,开发者发现TSan对项目中JS原子操作的实现方式提出了警告。具体表现为TSan检测到在js_atomics_op
函数中出现了数据竞争情况:主线程执行原子写操作的同时,另一个线程正在执行读取操作。
TSan的警告信息特别指出,这种数据竞争发生在共享内存区域,并且提到了"通过sleep同步"的潜在问题。虽然这种警告可能是一个假阳性,但它确实揭示了项目中混合使用原子操作和互斥锁的实现方式。
技术分析
QuickJS-ng中的原子操作实现存在以下特点:
- 使用
js_mutex_t
类型的全局互斥锁js_atomics_mutex
来保护原子操作 - 通过
js_once_t
确保原子操作系统的单次初始化 - 使用链表结构管理等待原子操作的线程
TSan的警告主要集中在js_atomics_op
和js_atomics_wait
函数之间的交互上。前者执行原子写操作,后者执行非原子读操作,这种混合访问模式触发了TSan的数据竞争检测。
解决方案探索
开发者尝试了几种解决方案:
-
互斥锁同步方案:在
js_agent_sleep
函数中添加对js_atomics_mutex
的获取和释放操作。虽然这看起来像是一个简单的同步点,但实际测试表明它能有效消除TSan的警告,且对性能影响可以接受。 -
构建系统调整:考虑通过CMake构建系统有条件地暴露互斥锁符号,但发现由于静态链接的特性,这种方法不可行。
-
配置简化:计划移除
CONFIG_AGENT
定义,简化构建配置,因为非代理构建已经无法正常工作。
性能考量
在实际测试中,添加TSan支持后:
- 完整测试套件执行时间显著增加(超过1小时墙钟时间)
- 仅测试Atomics.wait功能也需要约8秒
- 使用快速配置后,测试时间可降至约42秒(在M1 Max处理器上)
这种性能开销使得TSan不适合作为常规CI测试的一部分,但可以考虑像Valgrind一样,仅在主分支推送时运行。
实现建议
基于上述分析,建议的最终实现方案包括:
- 在原子操作相关函数中添加必要的同步点
- 移除不再使用的
CONFIG_AGENT
定义 - 将TSan测试作为选择性测试项,而非默认CI流程
- 在代码中添加适当的注释,说明TSan相关的特殊处理
结论
为QuickJS-ng添加TSan支持虽然面临挑战,但通过合理的同步机制和构建调整是可以实现的。这种支持对于检测并发编程错误非常有价值,特别是在处理SharedArrayBuffer和Atomics等高级JavaScript特性时。考虑到性能开销,建议将其作为可选的高级测试工具,而非默认构建选项。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0307- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









