CnOCR项目中处理左右分栏文本识别的排序方法
2025-06-20 08:05:40作者:龚格成
在实际使用CnOCR进行文档识别时,经常会遇到左右分栏排版的文档内容。这类文档的特点是页面被垂直分割为左右两部分,每部分包含独立的文本内容流。标准的OCR识别过程往往会打乱这种自然的阅读顺序,导致识别结果不符合人类的阅读习惯。
问题分析
当使用CnOCR识别左右分栏文档时,系统会返回所有识别到的文本块及其位置信息。这些文本块通常按照某种算法顺序(如从上到下、从左到右)排列,而不是按照人类阅读左右分栏文档的自然顺序(先完整识别左栏,再识别右栏)。
解决方案
1. 基于位置信息的排序算法
CnOCR返回的每个识别结果都包含文本块的位置坐标(四个角的x,y值)。我们可以利用这些坐标信息实现智能排序:
- 计算每个文本块的中心坐标
- 确定文档的垂直分割线位置(可通过分析所有文本块的水平分布)
- 将文本块分为左栏和右栏两组
- 分别对每栏内的文本块按垂直位置排序
- 合并结果(先左栏后右栏)
2. 实现示例代码
def sort_two_column_ocr_results(ocr_results):
# 计算每个文本块的中心x坐标并确定分割线
centers = [(r['position'][0][0] + r['position'][1][0])/2 for r in ocr_results]
split_line = sum(centers) / len(centers) # 简单取平均值作为分割线
# 分为左右两栏
left = []
right = []
for i, r in enumerate(ocr_results):
center = centers[i]
if center < split_line:
left.append((r['position'][0][1], r)) # 使用y坐标作为排序键
else:
right.append((r['position'][0][1], r))
# 分别按y坐标排序
left_sorted = [r for (y, r) in sorted(left, key=lambda x: x[0])]
right_sorted = [r for (y, r) in sorted(right, key=lambda x: x[0])]
# 合并结果
return left_sorted + right_sorted
3. 高级优化建议
对于更复杂的文档布局,可以考虑以下优化:
- 动态分割线检测:使用聚类算法自动确定最佳分割位置
- 多栏处理:扩展算法支持三栏或更多分栏情况
- 段落合并:识别连续文本块并合并为完整段落
- 标题识别:通过字体大小或样式识别标题,保持标题与内容的关联性
实际应用效果
应用上述排序方法后,左右分栏文档的识别结果将保持自然的阅读顺序:
- 左栏所有内容(从上到下)
- 右栏所有内容(从上到下)
这种排序方式特别适合处理:
- 学术论文的双栏排版
- 报纸杂志的多栏布局
- 任何形式的垂直分栏文档
总结
CnOCR虽然不直接提供分栏排序功能,但通过其返回的详细位置信息,开发者可以轻松实现智能排序算法。这种方法不仅适用于简单的左右分栏,经过扩展后还能处理更复杂的文档布局,大大提升了OCR结果的可读性和实用性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
218
88
暂无简介
Dart
720
174
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
334
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
435
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19