CnOCR项目中处理左右分栏文本识别的排序方法
2025-06-20 14:36:26作者:龚格成
在实际使用CnOCR进行文档识别时,经常会遇到左右分栏排版的文档内容。这类文档的特点是页面被垂直分割为左右两部分,每部分包含独立的文本内容流。标准的OCR识别过程往往会打乱这种自然的阅读顺序,导致识别结果不符合人类的阅读习惯。
问题分析
当使用CnOCR识别左右分栏文档时,系统会返回所有识别到的文本块及其位置信息。这些文本块通常按照某种算法顺序(如从上到下、从左到右)排列,而不是按照人类阅读左右分栏文档的自然顺序(先完整识别左栏,再识别右栏)。
解决方案
1. 基于位置信息的排序算法
CnOCR返回的每个识别结果都包含文本块的位置坐标(四个角的x,y值)。我们可以利用这些坐标信息实现智能排序:
- 计算每个文本块的中心坐标
- 确定文档的垂直分割线位置(可通过分析所有文本块的水平分布)
- 将文本块分为左栏和右栏两组
- 分别对每栏内的文本块按垂直位置排序
- 合并结果(先左栏后右栏)
2. 实现示例代码
def sort_two_column_ocr_results(ocr_results):
# 计算每个文本块的中心x坐标并确定分割线
centers = [(r['position'][0][0] + r['position'][1][0])/2 for r in ocr_results]
split_line = sum(centers) / len(centers) # 简单取平均值作为分割线
# 分为左右两栏
left = []
right = []
for i, r in enumerate(ocr_results):
center = centers[i]
if center < split_line:
left.append((r['position'][0][1], r)) # 使用y坐标作为排序键
else:
right.append((r['position'][0][1], r))
# 分别按y坐标排序
left_sorted = [r for (y, r) in sorted(left, key=lambda x: x[0])]
right_sorted = [r for (y, r) in sorted(right, key=lambda x: x[0])]
# 合并结果
return left_sorted + right_sorted
3. 高级优化建议
对于更复杂的文档布局,可以考虑以下优化:
- 动态分割线检测:使用聚类算法自动确定最佳分割位置
- 多栏处理:扩展算法支持三栏或更多分栏情况
- 段落合并:识别连续文本块并合并为完整段落
- 标题识别:通过字体大小或样式识别标题,保持标题与内容的关联性
实际应用效果
应用上述排序方法后,左右分栏文档的识别结果将保持自然的阅读顺序:
- 左栏所有内容(从上到下)
- 右栏所有内容(从上到下)
这种排序方式特别适合处理:
- 学术论文的双栏排版
- 报纸杂志的多栏布局
- 任何形式的垂直分栏文档
总结
CnOCR虽然不直接提供分栏排序功能,但通过其返回的详细位置信息,开发者可以轻松实现智能排序算法。这种方法不仅适用于简单的左右分栏,经过扩展后还能处理更复杂的文档布局,大大提升了OCR结果的可读性和实用性。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~043CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5