Apache Kyuubi 中 ZORDER 插入功能的优化实践
背景介绍
在分布式数据处理系统中,数据布局对查询性能有着至关重要的影响。ZORDER 是一种多维数据聚类技术,它通过特定的排序方式将数据在物理存储上进行组织,使得在多个维度上的范围查询都能获得较好的数据局部性,从而减少 I/O 操作并提升查询性能。
Apache Kyuubi 作为一个企业级数据湖管理平台,提供了对 ZORDER 功能的支持。然而,在某些特定场景下,当执行计划包含 Repartition 或 RepartitionByExpression 操作时,ZORDER 插入功能却无法正常工作,这限制了用户在某些数据处理场景下的优化选择。
问题分析
在 Kyuubi 的现有实现中,当用户尝试在包含重分区操作的查询中执行 ZORDER 插入时,系统会拒绝该操作。这种行为源于对 ZORDER_GLOBAL_SORT_ENABLED 配置的严格检查,即使在不要求全局排序的场景下也强制要求该配置为 true。
深入分析这个问题,我们可以发现:
- 重分区操作本身已经对数据进行了重新分布,这为后续的 ZORDER 排序提供了良好的基础
- 在某些情况下,用户可能只需要在分区内部进行 ZORDER 排序,而不需要全局排序
- 当前的限制过于严格,实际上阻碍了一些合理的优化场景
解决方案
经过技术团队的讨论和验证,决定对 ZORDER 插入功能的限制进行优化:
- 放宽对 ZORDER_GLOBAL_SORT_ENABLED 配置的检查,允许在重分区操作后执行 ZORDER 插入
- 保持对全局排序场景的严格检查,确保数据一致性
- 优化执行计划生成逻辑,确保在重分区后正确应用 ZORDER 排序
这一改进的核心思想是:在保证数据正确性的前提下,为用户提供更大的灵活性,允许他们在更多场景下利用 ZORDER 优化查询性能。
实现细节
具体实现上,主要修改了以下几个关键点:
- 修改了逻辑计划的验证逻辑,区分全局排序和局部排序场景
- 调整了 ZORDER 插入的预处理规则,使其能够正确处理重分区后的数据
- 优化了执行计划转换过程,确保 ZORDER 排序能够正确应用在重分区操作之后
这些修改使得系统能够智能地判断何时需要严格的全局排序保证,何时可以放宽限制以提高灵活性。
实际影响
这一改进为用户带来了以下好处:
- 更灵活的数据优化选择:用户可以在更多数据处理场景中使用 ZORDER 优化
- 更好的性能表现:在重分区后应用 ZORDER 可以减少数据倾斜,提高查询效率
- 更低的资源消耗:局部排序通常比全局排序消耗更少的计算资源
总结
通过对 Kyuubi 中 ZORDER 插入功能的优化,技术团队解决了在重分区场景下无法使用 ZORDER 的限制,为用户提供了更灵活、更高效的数据优化手段。这一改进体现了 Kyuubi 项目持续优化用户体验、提升系统性能的承诺,也为后续类似功能的开发提供了有价值的参考。
对于使用 Kyuubi 进行大数据处理的用户来说,现在可以在更广泛的场景中利用 ZORDER 技术优化数据布局,从而获得更好的查询性能。这一改进也展示了开源社区通过持续迭代优化产品功能的典型过程。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00