Eliot:告诉你“为什么”发生的日志系统
项目介绍
Eliot 是一个专为Python设计的日志系统,它不仅记录事件的发生,更重要的是,它通过构建因果关系链来解释为什么会发生这些事件。这使得开发者能够轻易追踪应用性能瓶颈,理解特定代码路径的选择原因,以及错误发生的根源。不同于传统日志的简单事实罗列,Eliot提供的日志能够讲述软件执行的故事——即什么发生了,以及是什么导致了这一切。它支持多种场景,包括单进程内日志记录,分布式系统的因果追踪,科学计算(内置对NumPy和Dask的支持),以及异步框架如asyncio和Twisted的集成。Eliot兼容Python 3.8至3.12及PyPy3,遵循Apache 2.0许可证,并由Itamar Turner-Trauring维护。
项目快速启动
要快速开始使用Eliot,首先确保你的环境中安装了Python 3.8或更高版本。然后,你可以通过pip轻松安装Eliot:
pip install eliot
接下来,在你的Python脚本中引入Eliot并创建一个任务:
from eliot import start_action, log_task_completed, Message
def main():
with start_action(action_type="example_task"):
# 进行你的操作
result = "示例操作完成"
# 任务成功完成
log_task_completed()
return result
if __name__ == "__main__":
print(main())
在上述代码中,start_action定义了一个任务的开始,而log_task_completed标记任务结束。这样,Eliot就能捕获任务过程中的相关信息。
应用案例和最佳实践
案例一:性能分析
使用Eliot,你可以添加时间戳来监控函数的执行时间,从而进行性能分析。例如,测量某个方法执行的时间段。
import time
with start_action(action_type="time_measurement"):
start_time = time.time()
# 执行被测代码
time.sleep(1)
end_time = time.time()
Message.log(message_type="duration", value=end_time - start_time)
最佳实践
- 明确因果关系:确保每个行动都有清晰的开始和结束,且逻辑关系明确。
- 使用任务ID:跨多个函数或组件传递任务ID,有助于跟踪复杂流程。
- 适当地记录关键决策点:哪些条件判断触发了特定分支的执行。
典型生态项目
Eliot设计得相当独立,但其强大在于能够整合到各种生态系统中,比如使用Logstash和ElasticSearch等工具进行日志的集中收集、分析与存储,尤其适用于分布式系统环境。此外,结合Grafana或Kibana可以实现日志数据的可视化,便于分析。虽然Eliot本身不直接提供这些生态服务,但它良好的结构化输出让其成为现代微服务架构和大数据分析平台的理想日志解决方案。
通过以上步骤和实践,你可以高效地利用Eliot提升你的应用日志管理和故障排查能力。记住,合理规划日志策略,可以使Eliot成为你不可或缺的开发伙伴。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01