Emu 项目使用教程
1. 项目介绍
Emu 是一个开源的 WebAssembly 虚拟机,旨在提供高性能的 WebAssembly 执行环境。它支持多种编程语言编译到 WebAssembly,并且可以在多种平台上运行,包括浏览器、服务器和嵌入式设备。Emu 项目的目标是简化 WebAssembly 的开发和部署流程,使得开发者能够更轻松地将 WebAssembly 应用到实际项目中。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具:
- Rust 编程语言(建议使用
rustup安装) cargo(Rust 的包管理工具)git(用于克隆项目仓库)
2.2 克隆项目
首先,克隆 Emu 项目到本地:
git clone https://github.com/calebwin/emu.git
cd emu
2.3 构建项目
使用 cargo 构建项目:
cargo build --release
2.4 运行示例
Emu 项目包含一些示例程序,你可以通过以下命令运行其中一个示例:
cargo run --example hello_world
这个命令会编译并运行 hello_world 示例程序,输出 "Hello, World!"。
3. 应用案例和最佳实践
3.1 在浏览器中运行 WebAssembly
Emu 可以作为一个 WebAssembly 运行时嵌入到浏览器中。你可以使用 Emu 来执行从 Rust、C++ 或其他语言编译的 WebAssembly 模块。以下是一个简单的示例,展示如何在浏览器中使用 Emu 运行 WebAssembly 模块。
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Emu WebAssembly Example</title>
</head>
<body>
<script src="path/to/emu.js"></script>
<script>
async function runWasm() {
const response = await fetch('path/to/your_module.wasm');
const buffer = await response.arrayBuffer();
const module = await WebAssembly.compile(buffer);
const instance = await WebAssembly.instantiate(module);
instance.exports.your_function();
}
runWasm();
</script>
</body>
</html>
3.2 服务器端 WebAssembly
Emu 也可以在服务器端运行 WebAssembly 模块。你可以使用 Emu 来执行计算密集型任务,或者作为微服务的一部分。以下是一个使用 Emu 在服务器端运行 WebAssembly 模块的示例:
use emu::{Emu, Config};
fn main() {
let config = Config::default();
let mut emu = Emu::new(config);
let module = include_bytes!("path/to/your_module.wasm");
let instance = emu.instantiate(module).unwrap();
instance.call("your_function", &[]).unwrap();
}
4. 典型生态项目
4.1 Wasmer
Wasmer 是一个高性能的 WebAssembly 运行时,支持多种编程语言和平台。Emu 可以与 Wasmer 结合使用,提供更强大的 WebAssembly 执行能力。
4.2 Wasmtime
Wasmtime 是另一个流行的 WebAssembly 运行时,由 Bytecode Alliance 开发。Emu 可以与 Wasmtime 一起使用,提供跨平台的 WebAssembly 执行环境。
4.3 Lucet
Lucet 是一个专门为 WebAssembly 设计的运行时,旨在提供高性能和安全性。Emu 可以与 Lucet 结合使用,提供更高效的 WebAssembly 执行解决方案。
通过这些生态项目,Emu 可以扩展其功能,满足不同场景下的需求。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00