首页
/ EmbedMask安装与使用指南

EmbedMask安装与使用指南

2024-09-28 16:25:46作者:郦嵘贵Just

项目概述

EmbedMask 是一个实现了一种一阶段实例分割方法的开源项目,通过嵌入耦合(Embedding Coupling)技术,它结合了基于分割和基于提议的方法的优点。该项目基于FCOS框架,并利用maskrcnn-benchmark的部分基础架构。此指南将引导您了解其目录结构、启动与配置相关知识。

1. 目录结构及介绍

以下是EmbedMask项目的典型目录结构及其主要内容:

- EmbedMask/
  ├── configs                  # 配置文件夹,存放各种实验配置yaml文件。
  ├── demo                     # 示例代码,用于快速体验或测试模型。
  ├── docker                   # Docker相关文件,便于容器化部署。
  ├── fcos                     # FCOS相关的源码,因为EmbedMask构建在FCOS之上。
  ├── fcos_core                # FCOS的核心组件代码。
  ├── scripts                  # 启动脚本或其他辅助脚本。
  ├── setups                   # 可能包含额外设置文件。
  ├── tests                    # 测试代码和数据验证脚本。
  ├── tools                    # 工具函数和命令行工具,如训练、评估、预测等。
  ├── README.md               # 项目说明文件。
  ├── LICENSE                 # 许可证文件,采用MIT许可证。
  ├── setup.py                # Python包安装脚本。
  └── 数据集链接               # 注意:实际项目中会有关于如何下载和准备COCO数据集的指示。

2. 项目的启动文件介绍

主要执行入口

  • 演示与快速体验:

    • 在完成安装并下载预训练模型后,可以通过以下命令进行快速演示:

      mkdir -p demo/output
      python demo/embed_mask_demo.py \
        --config-file configs/embed_mask/embed_mask_R50_1x.yaml \
        --weights models/embed_mask_R50_1x.pth
      
  • 训练新模型: 使用分布式训练作为示例,以下是在4张GPU上以batch size 16训练模型的命令:

    CUDA_VISIBLE_DEVICES=0,2 \
    python -m torch.distributed.launch \
      --nproc_per_node=2 \
      --master_port=$((RANDOM + 10000)) \
      tools/train_net.py \
      --config-file configs/embed_mask/embed_mask_R50_1x.yaml \
      DATALOADER.NUM_WORKERS 4 \
      SOLVER.IMS_PER_BATCH 8 \
      OUTPUT_DIR training_dir/embed_mask_R50_1x
    

3. 项目的配置文件介绍

配置文件主要位于configs目录下,每个.yaml文件定义了一个具体的实验配置,包括但不限于模型架构、训练设置、优化器选项、数据集路径等。例如,在训练时,您会指定诸如embed_mask_R50_1x.yaml这样的配置文件,该文件详细说明了使用的网络结构(MODEL)、训练的数据批次大小(SOLVER.IMS_PER_BATCH)、输出目录以及其他关键设置。

配置样例简析:

  • 模型配置: 定义使用的模型结构和权重。
  • 训练参数: 包括学习率、迭代次数、损失函数设置等。
  • 数据加载: 指定数据集路径、预处理方式、数据增强策略等。
  • 输出设置: 训练日志记录和模型保存路径。

使用配置文件时,可根据需要调整这些参数以满足不同的实验需求。


以上是关于EmbedMask项目的基本使用说明,确保遵循项目官方文档和依赖项要求,以便顺利运行项目。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
610
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
376
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0