EmbedMask安装与使用指南
2024-09-28 00:29:01作者:郦嵘贵Just
项目概述
EmbedMask 是一个实现了一种一阶段实例分割方法的开源项目,通过嵌入耦合(Embedding Coupling)技术,它结合了基于分割和基于提议的方法的优点。该项目基于FCOS框架,并利用maskrcnn-benchmark的部分基础架构。此指南将引导您了解其目录结构、启动与配置相关知识。
1. 目录结构及介绍
以下是EmbedMask
项目的典型目录结构及其主要内容:
- EmbedMask/
├── configs # 配置文件夹,存放各种实验配置yaml文件。
├── demo # 示例代码,用于快速体验或测试模型。
├── docker # Docker相关文件,便于容器化部署。
├── fcos # FCOS相关的源码,因为EmbedMask构建在FCOS之上。
├── fcos_core # FCOS的核心组件代码。
├── scripts # 启动脚本或其他辅助脚本。
├── setups # 可能包含额外设置文件。
├── tests # 测试代码和数据验证脚本。
├── tools # 工具函数和命令行工具,如训练、评估、预测等。
├── README.md # 项目说明文件。
├── LICENSE # 许可证文件,采用MIT许可证。
├── setup.py # Python包安装脚本。
└── 数据集链接 # 注意:实际项目中会有关于如何下载和准备COCO数据集的指示。
2. 项目的启动文件介绍
主要执行入口
-
演示与快速体验:
-
在完成安装并下载预训练模型后,可以通过以下命令进行快速演示:
mkdir -p demo/output python demo/embed_mask_demo.py \ --config-file configs/embed_mask/embed_mask_R50_1x.yaml \ --weights models/embed_mask_R50_1x.pth
-
-
训练新模型: 使用分布式训练作为示例,以下是在4张GPU上以batch size 16训练模型的命令:
CUDA_VISIBLE_DEVICES=0,2 \ python -m torch.distributed.launch \ --nproc_per_node=2 \ --master_port=$((RANDOM + 10000)) \ tools/train_net.py \ --config-file configs/embed_mask/embed_mask_R50_1x.yaml \ DATALOADER.NUM_WORKERS 4 \ SOLVER.IMS_PER_BATCH 8 \ OUTPUT_DIR training_dir/embed_mask_R50_1x
3. 项目的配置文件介绍
配置文件主要位于configs
目录下,每个.yaml
文件定义了一个具体的实验配置,包括但不限于模型架构、训练设置、优化器选项、数据集路径等。例如,在训练时,您会指定诸如embed_mask_R50_1x.yaml
这样的配置文件,该文件详细说明了使用的网络结构(MODEL
)、训练的数据批次大小(SOLVER.IMS_PER_BATCH
)、输出目录以及其他关键设置。
配置样例简析:
- 模型配置: 定义使用的模型结构和权重。
- 训练参数: 包括学习率、迭代次数、损失函数设置等。
- 数据加载: 指定数据集路径、预处理方式、数据增强策略等。
- 输出设置: 训练日志记录和模型保存路径。
使用配置文件时,可根据需要调整这些参数以满足不同的实验需求。
以上是关于EmbedMask项目的基本使用说明,确保遵循项目官方文档和依赖项要求,以便顺利运行项目。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~093Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile01
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp论坛排行榜项目中的错误日志规范要求5 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 6 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析10 freeCodeCamp课程中屏幕放大器知识点优化分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

openGauss kernel ~ openGauss is an open source relational database management system
C++
138
188

React Native鸿蒙化仓库
C++
187
266

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
892
529

deepin linux kernel
C
22
6

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
370
387

Konado是一个对话创建工具,提供多种对话模板以及对话管理器,可以快速创建对话游戏,也可以嵌入各类游戏的对话场景
GDScript
20
12

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
94
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
337
1.11 K

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0