DeepLabCut项目中提取异常帧标签保存问题的技术分析
2025-06-10 09:11:01作者:邓越浪Henry
问题背景
在DeepLabCut项目使用过程中,研究人员发现了一个关于异常帧提取后标签保存的问题。具体表现为:当用户通过GUI界面修改机器生成的标签后,保存操作无法正确持久化修改内容,重新打开后标签会恢复原状。
环境配置
该问题出现在以下环境中:
- 操作系统:Windows 11 Enterprise 22H2(本地)和RHEL9(HPC)
- DeepLabCut版本:2.3.9
- 运行模式:单动物模式
- 硬件配置:本地使用Intel i7-12700 CPU,HPC使用AMD EPYC 7H12处理器和NVIDIA A100 GPU
问题详细描述
研究人员在HPC集群上训练模型后,将项目文件通过网络映射到本地Windows机器进行后续处理。主要操作流程包括:
- 在HPC上使用Slurm批处理命令添加新视频到现有模型
- 执行视频分析、预测过滤、创建标记视频和提取异常帧等操作
- 在本地修改config.yaml文件路径以匹配本地环境
- 通过GUI打开异常帧文件夹并修改机器生成的标签
- 保存修改后发现标签无法持久化
技术分析
从错误日志和问题描述来看,该问题可能涉及以下几个技术层面:
-
路径处理问题:DeepLabCut在不同操作系统间迁移项目时,路径格式转换可能导致文件读写权限或路径解析异常。Windows的Z:盘映射与Linux原生路径的兼容性问题需要特别注意。
-
标签保存机制:DeepLabCut的标签系统分为两个独立层:
machinelabels层:包含模型预测的关键点CollectedData层:包含人工标注或修改后的关键点
修改后的标签应该保存到
CollectedData层而非直接覆盖machinelabels层。 -
GUI框架兼容性:错误日志中出现的PySide6事件过滤器类型不匹配问题,表明可能存在GUI框架与操作系统或Python环境的兼容性问题。
-
文件权限问题:通过网络映射访问文件可能导致文件写入权限受限,特别是当程序尝试修改原始预测文件时。
解决方案建议
针对这一问题,建议采取以下解决步骤:
-
验证标签保存路径:
- 确认修改后的标签是否被正确保存到
CollectedData文件中 - 检查文件修改时间戳确认保存操作是否实际发生
- 确认修改后的标签是否被正确保存到
-
本地化处理:
- 将完整项目文件夹复制到本地而非通过网络映射访问
- 确保config.yaml中的路径全部使用本地绝对路径
-
权限检查:
- 确认程序对目标文件夹有写入权限
- 检查防病毒软件是否阻止了文件修改操作
-
替代操作方法:
- 使用命令行工具
deeplabcut.refine_labels()进行标签精修 - 确保在保存时选择了正确的图层(CollectedData层)
- 使用命令行工具
-
环境检查:
- 验证PySide6与当前Python环境的兼容性
- 考虑创建新的conda环境重新安装依赖
最佳实践
为避免类似问题,建议在使用DeepLabCut进行跨平台项目协作时:
- 使用相对路径而非绝对路径配置项目
- 在进行重要修改前备份项目文件夹
- 优先在原始训练环境中进行标签精修操作
- 定期检查文件权限和路径配置
- 保持DeepLabCut和相关依赖库的最新版本
通过以上分析和建议,研究人员应能有效解决标签保存问题,并优化跨平台使用DeepLabCut的工作流程。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355