DeepLabCut项目中提取异常帧标签保存问题的技术分析
2025-06-10 09:11:01作者:邓越浪Henry
问题背景
在DeepLabCut项目使用过程中,研究人员发现了一个关于异常帧提取后标签保存的问题。具体表现为:当用户通过GUI界面修改机器生成的标签后,保存操作无法正确持久化修改内容,重新打开后标签会恢复原状。
环境配置
该问题出现在以下环境中:
- 操作系统:Windows 11 Enterprise 22H2(本地)和RHEL9(HPC)
- DeepLabCut版本:2.3.9
- 运行模式:单动物模式
- 硬件配置:本地使用Intel i7-12700 CPU,HPC使用AMD EPYC 7H12处理器和NVIDIA A100 GPU
问题详细描述
研究人员在HPC集群上训练模型后,将项目文件通过网络映射到本地Windows机器进行后续处理。主要操作流程包括:
- 在HPC上使用Slurm批处理命令添加新视频到现有模型
- 执行视频分析、预测过滤、创建标记视频和提取异常帧等操作
- 在本地修改config.yaml文件路径以匹配本地环境
- 通过GUI打开异常帧文件夹并修改机器生成的标签
- 保存修改后发现标签无法持久化
技术分析
从错误日志和问题描述来看,该问题可能涉及以下几个技术层面:
-
路径处理问题:DeepLabCut在不同操作系统间迁移项目时,路径格式转换可能导致文件读写权限或路径解析异常。Windows的Z:盘映射与Linux原生路径的兼容性问题需要特别注意。
-
标签保存机制:DeepLabCut的标签系统分为两个独立层:
machinelabels层:包含模型预测的关键点CollectedData层:包含人工标注或修改后的关键点
修改后的标签应该保存到
CollectedData层而非直接覆盖machinelabels层。 -
GUI框架兼容性:错误日志中出现的PySide6事件过滤器类型不匹配问题,表明可能存在GUI框架与操作系统或Python环境的兼容性问题。
-
文件权限问题:通过网络映射访问文件可能导致文件写入权限受限,特别是当程序尝试修改原始预测文件时。
解决方案建议
针对这一问题,建议采取以下解决步骤:
-
验证标签保存路径:
- 确认修改后的标签是否被正确保存到
CollectedData文件中 - 检查文件修改时间戳确认保存操作是否实际发生
- 确认修改后的标签是否被正确保存到
-
本地化处理:
- 将完整项目文件夹复制到本地而非通过网络映射访问
- 确保config.yaml中的路径全部使用本地绝对路径
-
权限检查:
- 确认程序对目标文件夹有写入权限
- 检查防病毒软件是否阻止了文件修改操作
-
替代操作方法:
- 使用命令行工具
deeplabcut.refine_labels()进行标签精修 - 确保在保存时选择了正确的图层(CollectedData层)
- 使用命令行工具
-
环境检查:
- 验证PySide6与当前Python环境的兼容性
- 考虑创建新的conda环境重新安装依赖
最佳实践
为避免类似问题,建议在使用DeepLabCut进行跨平台项目协作时:
- 使用相对路径而非绝对路径配置项目
- 在进行重要修改前备份项目文件夹
- 优先在原始训练环境中进行标签精修操作
- 定期检查文件权限和路径配置
- 保持DeepLabCut和相关依赖库的最新版本
通过以上分析和建议,研究人员应能有效解决标签保存问题,并优化跨平台使用DeepLabCut的工作流程。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
479
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
248
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
451
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885