ebpf_exporter 使用教程
1. 项目介绍
ebpf_exporter
是一个由 Cloudflare 开源的项目,旨在通过 eBPF(Extended Berkeley Packet Filter)技术,将 Linux 内核中无法直接访问的指标导出到 Prometheus 监控系统中。eBPF 是一种革命性的技术,允许在 Linux 内核中运行沙盒程序,从而在不修改内核源代码或加载内核模块的情况下扩展内核功能。ebpf_exporter
通过编写 eBPF 代码,将这些内核指标转换为 Prometheus 可读取的格式,从而实现对系统性能的深度监控。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你的系统满足以下要求:
- Linux 内核版本 >= 4.15
- 安装了
clang
和llvm
- 安装了
golang
2.2 安装 ebpf_exporter
首先,克隆 ebpf_exporter
项目到本地:
git clone https://github.com/cloudflare/ebpf_exporter.git
cd ebpf_exporter
2.3 编译项目
使用以下命令编译 ebpf_exporter
:
make build
默认情况下,编译目标会生成一个静态二进制文件。如果你希望生成动态链接的二进制文件,可以使用 build-dynamic
目标:
make build-dynamic
2.4 运行 ebpf_exporter
编译完成后,你可以使用以下命令运行 ebpf_exporter
:
sudo ./ebpf_exporter --config.dir=examples --config.names=biolatency
如果你希望查看原始的 eBPF 映射或调试输出,可以添加 --debug
参数:
sudo ./ebpf_exporter --config.dir=examples --config.names=biolatency --debug
3. 应用案例和最佳实践
3.1 监控块设备 I/O 延迟
ebpf_exporter
可以用于监控块设备的 I/O 延迟。通过配置相应的 eBPF 程序,你可以捕获块设备的读写操作,并计算其延迟分布。以下是一个示例配置:
metrics:
histograms:
- name: bio_latency_seconds
help: Block IO latency histogram
bucket_type: exp2
bucket_multiplier: 1
bucket_min: 0
bucket_max: 20
labels:
- name: device
size: 4
- name: operation
size: 1
3.2 监控网络接口性能
通过 ebpf_exporter
,你可以监控网络接口的性能指标,如数据包接收和发送的延迟、丢包率等。以下是一个示例配置:
metrics:
counters:
- name: net_packets_total
help: Total number of network packets
labels:
- name: interface
size: 4
- name: direction
size: 1
4. 典型生态项目
4.1 Prometheus
ebpf_exporter
的主要目标是将 eBPF 捕获的指标导出到 Prometheus 中。Prometheus 是一个开源的监控和报警工具包,广泛用于云原生应用的监控。通过 ebpf_exporter
,你可以将内核级别的性能数据集成到 Prometheus 中,从而实现全面的系统监控。
4.2 Grafana
Grafana 是一个开源的度量分析和可视化套件,通常与 Prometheus 配合使用。通过 ebpf_exporter
导出的指标,可以在 Grafana 中创建丰富的仪表盘,实时展示系统的性能数据。
4.3 Kubernetes
在 Kubernetes 集群中,ebpf_exporter
可以用于监控容器和 Pod 的性能。通过与 Kubernetes 的集成,你可以获取更细粒度的性能数据,帮助优化集群的资源分配和性能调优。
通过以上步骤,你可以快速上手 ebpf_exporter
,并将其应用于实际的系统监控和性能优化中。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~058CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









