如何在MMSegmentation中优化WandB可视化效果
问题背景
在使用MMSegmentation进行图像分割任务时,许多开发者会选择使用Weights & Biases(WandB)来可视化训练过程和结果。近期有用户反馈,在使用WandB可视化GT(真实标签)和预测结果时,图像上会自动显示类别名称标签,这可能会影响视觉效果和分析。
技术分析
在MMSegmentation框架中,可视化功能主要通过mmseg.visualization模块实现。当与WandB集成时,系统会将分割结果转换为可视化图像,默认情况下会包含类别标签信息以便于识别不同语义区域。
这种自动添加标签的行为实际上是MMSegmentation的一个设计特性,目的是帮助研究人员快速识别各个语义区域。然而在某些情况下,特别是当类别较多或标签文字较大时,可能会遮挡图像内容,影响分析效果。
解决方案
要关闭这个自动显示类别名称的功能,可以通过修改配置文件或代码中的可视化参数来实现。具体方法如下:
-
修改配置文件:在MMSegmentation的配置文件中,可以找到
vis_backends部分,添加或修改draw_gt和draw_pred相关参数,将show_label设置为False。 -
代码层面修改:如果在代码中直接调用可视化函数,可以在调用时传递
show_label=False参数。 -
自定义可视化类:对于更高级的需求,可以继承默认的可视化类并重写相关方法,完全控制可视化输出。
最佳实践建议
-
开发阶段保留标签:在模型开发和调试阶段,建议保留类别标签显示,便于快速验证模型表现。
-
最终展示时优化:当需要生成最终报告或演示材料时,可以关闭标签显示以获得更干净的视觉效果。
-
灵活切换:可以设置一个配置开关,根据需要随时切换标签显示状态。
总结
MMSegmentation提供了灵活的可视化配置选项,开发者可以根据实际需求调整WandB中的显示效果。理解这些配置选项的使用方法,可以帮助我们更好地展示和分析模型性能,同时保持视觉效果的整洁和专业性。
通过合理配置可视化参数,我们可以在模型可解释性和视觉效果之间取得平衡,从而更有效地进行语义分割任务的研究和开发工作。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00