VLM-R1项目中视觉定位任务输入图像与标注对齐问题解析
2025-06-11 13:38:56作者:卓艾滢Kingsley
在VLM-R1项目中进行Referring Expression Comprehension(REC)任务时,开发者可能会遇到一个关键的技术问题:输入图像需要被调整尺寸(通常填充至28的倍数)才能输入模型,但这种调整可能导致图像与标注数据之间的空间对齐问题。本文将深入分析这一问题的技术本质及其解决方案。
问题背景
在计算机视觉领域,Referring Expression Comprehension任务要求模型能够根据自然语言描述在图像中精确定位目标区域。这类任务通常需要处理两种数据:
- 原始输入图像
- 对应的标注信息(如边界框坐标或分割掩码)
传统视觉模型中,图像预处理(如resize或padding)确实会导致标注信息与处理后的图像不匹配的问题,通常需要开发者手动实现标注信息的相应变换。
Qwen-2.5-VL模型的独特设计
VLM-R1项目中采用的Qwen-2.5-VL模型采用了创新的设计思路来解决这一问题:
-
智能尺寸调整:模型会将图像长宽调整至最接近的28的倍数(例如55→56,278→280),这种调整保持了原始图像的长宽比,使形变最小化。
-
原图尺寸感知机制:模型通过image_grid_thw参数接收原始图像尺寸信息,并在图像token的位置编码(RoPE)中利用这一信息,使模型能够感知原始图像的实际尺寸。
-
绝对坐标输出:与Qwen-2-VL、InternVL和LLaVA等模型输出相对坐标(基于1000的归一化值)不同,Qwen-2.5-VL直接输出原始图像上的绝对坐标,可以直接与ground truth进行比较。
实际影响与验证
项目实践表明,这种设计在实际应用中表现良好:
- 测试结果显示,使用step100-checkpoint在Lisa_test.json数据集上可以达到约60分的评分
- 即使不进行额外的坐标转换处理,模型输出的坐标也能直接用于可视化
- 相比基线模型(Qwen-2.5-VL-3B-Instruct)的56.51分,经过微调的模型性能有明显提升
对其他项目的启示
对于希望在自定义数据集上应用类似方法的开发者,建议:
- 理解模型特有的坐标处理机制,避免不必要的坐标转换
- 验证模型输出坐标的性质(绝对坐标或相对坐标)
- 对于非Qwen架构的模型,仍需实现传统的标注变换流程
这种设计不仅简化了预处理流程,还提高了模型的实用性和易用性,为视觉定位任务提供了一种新的技术思路。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
226
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868