Feature Engineering Made Easy 使用教程
2025-04-18 22:13:20作者:牧宁李
1. 项目介绍
Feature Engineering Made Easy 是由 Packt Publishing 提供的一个开源项目,该项目是一个关于特征工程的实践教程,旨在帮助开发者系统地学习并掌握特征工程的知识和技巧。特征工程是机器学习领域中至关重要的一步,它能够显著提升模型的性能。本项目通过丰富的案例和实战代码,指导读者如何从原始数据中提取有效的特征,以及如何进行特征选择、特征学习和特征优化。
2. 项目快速启动
为了快速启动本项目,你需要有一个安装了 Python 2.7 的环境,安装 Anaconda 分布式是一个推荐的选择,因为它包含了大多数所需的包。
以下是启动项目的步骤:
首先,克隆项目到本地环境:
git clone https://github.com/PacktPublishing/Feature-Engineering-Made-Easy.git
cd Feature-Engineering-Made-Easy
接着,安装所需的 Python 包(确保你已经安装了 Anaconda):
conda install -c anaconda pandas
然后,你可以运行项目中的示例代码来熟悉项目结构。以下是一个简单的示例:
import pandas as pd
# 创建一个特征数据框
Network_features = pd.DataFrame({
'datetime': ['6/2/2018', '6/2/2018', '6/2/2018', '6/3/2018'],
'protocol': ['tcp', 'http', 'http', 'http'],
'urgent': [False, True, True, False]
})
# 创建一个响应序列
Network_response = pd.Series([True, True, False, True])
# 显示特征数据
print(Network_features)
# 显示响应序列
print(Network_response)
运行上述代码后,你将看到类似以下输出:
datetime protocol urgent
0 6/2/2018 tcp False
1 6/2/2018 http True
2 6/2/2018 http True
3 6/3/2018 http False
0 True
1 True
2 False
3 True
dtype: bool
3. 应用案例和最佳实践
在本项目中,你将学习如何处理不同类型的数据,比如连续型和分类型数据,并理解何时包含或省略一个特征。以下是一些案例和最佳实践:
- 分析错误并理解模型的可接受性。
- 将问题陈述转换为有用的新特征。
- 根据业务需求和数学洞察来生成特征。
- 学习如何使用机器学习方法自动学习数据的惊人特征。
4. 典型生态项目
Feature Engineering Made Easy 是一个典型的数据科学项目,它通常与以下生态项目相结合:
- 机器学习库,如 scikit-learn,用于构建和评估模型。
- 数据可视化工具,如 Matplotlib 或 Seaborn,用于数据的图形表示。
- 大数据处理框架,如 Apache Spark,用于处理大规模数据集。
通过本教程的学习和实践,你将能够更好地理解和应用特征工程,从而提高机器学习模型的性能和效果。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
177
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
864
512

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K