Feature Engineering Made Easy 使用教程
2025-04-18 22:49:06作者:牧宁李
1. 项目介绍
Feature Engineering Made Easy 是由 Packt Publishing 提供的一个开源项目,该项目是一个关于特征工程的实践教程,旨在帮助开发者系统地学习并掌握特征工程的知识和技巧。特征工程是机器学习领域中至关重要的一步,它能够显著提升模型的性能。本项目通过丰富的案例和实战代码,指导读者如何从原始数据中提取有效的特征,以及如何进行特征选择、特征学习和特征优化。
2. 项目快速启动
为了快速启动本项目,你需要有一个安装了 Python 2.7 的环境,安装 Anaconda 分布式是一个推荐的选择,因为它包含了大多数所需的包。
以下是启动项目的步骤:
首先,克隆项目到本地环境:
git clone https://github.com/PacktPublishing/Feature-Engineering-Made-Easy.git
cd Feature-Engineering-Made-Easy
接着,安装所需的 Python 包(确保你已经安装了 Anaconda):
conda install -c anaconda pandas
然后,你可以运行项目中的示例代码来熟悉项目结构。以下是一个简单的示例:
import pandas as pd
# 创建一个特征数据框
Network_features = pd.DataFrame({
'datetime': ['6/2/2018', '6/2/2018', '6/2/2018', '6/3/2018'],
'protocol': ['tcp', 'http', 'http', 'http'],
'urgent': [False, True, True, False]
})
# 创建一个响应序列
Network_response = pd.Series([True, True, False, True])
# 显示特征数据
print(Network_features)
# 显示响应序列
print(Network_response)
运行上述代码后,你将看到类似以下输出:
datetime protocol urgent
0 6/2/2018 tcp False
1 6/2/2018 http True
2 6/2/2018 http True
3 6/3/2018 http False
0 True
1 True
2 False
3 True
dtype: bool
3. 应用案例和最佳实践
在本项目中,你将学习如何处理不同类型的数据,比如连续型和分类型数据,并理解何时包含或省略一个特征。以下是一些案例和最佳实践:
- 分析错误并理解模型的可接受性。
- 将问题陈述转换为有用的新特征。
- 根据业务需求和数学洞察来生成特征。
- 学习如何使用机器学习方法自动学习数据的惊人特征。
4. 典型生态项目
Feature Engineering Made Easy 是一个典型的数据科学项目,它通常与以下生态项目相结合:
- 机器学习库,如 scikit-learn,用于构建和评估模型。
- 数据可视化工具,如 Matplotlib 或 Seaborn,用于数据的图形表示。
- 大数据处理框架,如 Apache Spark,用于处理大规模数据集。
通过本教程的学习和实践,你将能够更好地理解和应用特征工程,从而提高机器学习模型的性能和效果。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210