OpenQS liboqs项目引入OpenSSF安全评分卡实践
在开源软件供应链安全日益受到重视的背景下,OpenQS liboqs项目近期完成了OpenSSF安全评分卡(Scorecard)的集成工作。作为专注于后量子密码学实现的开源项目,这一举措显著提升了项目的安全透明度和可信度。
OpenSSF安全评分卡是由Linux基金会开源安全基金会(OpenSSF)推出的一套自动化安全评估工具,它通过多项指标对开源项目的安全实践进行系统化评估。评分卡检查的内容包括但不限于:代码审查流程、依赖管理、CI/CD安全配置、维护活跃度等关键安全维度。
在liboqs项目中实施OpenSSF评分卡主要涉及三个关键改进:
首先是对GitHub Actions工作流的加固。项目将所有工作流中引用的Actions都从简单的版本标签升级为包含完整SHA256哈希的引用方式。这种"固定依赖"的做法确保了每次构建使用的都是经过验证的精确版本,有效防范了供应链攻击风险。实际操作中使用了专门的自动化工具来完成这一转换,既保证了准确性又提高了效率。
其次是对Python依赖的加固处理。项目中用于上游代码同步的脚本依赖多个Python包,原先的requirements.txt文件仅指定了版本号。改进后为每个依赖包添加了完整的哈希校验值,确保安装的包与预期完全一致。这一过程借助了Python生态中的hashin工具来自动完成哈希值的计算和添加。
最后是细粒度的权限控制。项目为每个GitHub Action工作流明确定义了所需的最小权限集,遵循了最小权限原则。这一改变虽然增加了配置的复杂度,但显著降低了潜在的安全风险。
这些改进使得liboqs项目在OpenSSF评分卡的多项关键指标上获得了显著提升,包括依赖管理、构建过程安全和权限控制等方面。作为密码学基础库,这些安全增强措施不仅提升了项目本身的安全性,也为依赖它的上层应用提供了更强的安全保障。
实施过程中,项目团队特别注重变更的可控性,通过分阶段实施和充分测试确保每个安全改进都不会影响现有功能的正常运行。这种审慎的态度对于关键基础设施类项目尤为重要。
OpenQS liboqs项目的这一实践为其他开源项目,特别是安全敏感型项目提供了有价值的参考。它展示了如何通过系统化的安全评估和渐进式的改进来提升项目的整体安全水平,同时也体现了开源社区对安全最佳实践的持续追求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00