SeLaVi: 从零开始的多模态自监督视频标注项目
2025-05-17 11:57:43作者:翟江哲Frasier
1. 项目介绍
SeLaVi(Self-Supervised Labelling of Videos from Scratch)是一个基于深度学习的开源项目,旨在通过多模态自监督学习的方式,对无标签视频数据进行标注。该项目由Facebook Research团队开发,提供了一种高效且简单的方法来学习多模态音视频数据的标签。
SeLaVi的核心贡献包括:
- 即使是非常强大的特征表示,如监督预训练的R(2+1)D-18或MIL-NCE S3D网络,在聚类性能上也低于本项目的方法。
- 真正的多模态聚类能够产生稳健的聚类结果,因为该方法将每种模态视为另一种模态的增强,即使在一种模态退化时也能给出稳定的预测。
2. 项目快速启动
环境准备
SeLaVi项目在以下环境中进行了测试:
- Ubuntu 16.04.5 LTS
- Python 3.7.5
- PyTorch 1.3.1
- Torchvision 0.4.1
- CUDA 10.0
使用conda创建虚拟环境并安装所需的包:
conda env create -f environment.yml
conda activate lab_vid
确保预处理的数据集(VGG-Sound、Kinetics、AVE)的文件夹结构如下:
{dataset_name}/{train,val,test}/{class_name}/{video_name}.mp4
单节点训练
以VGG-Sound数据集为例,使用8个GPU进行200个epoch的训练:
python -m torch.distributed.launch --nproc_per_node=8 main.py \
--root_dir /path/to/VGGSound \
--epochs 200 \
--batch_size 16 \
--base_lr 1e-2 \
--ds_name vgg_sound \
--use_mlp True \
--mlp_dim 309 \
--headcount 10 \
--match True \
--distribution gauss \
--ind_groups 2
分布式训练
通过Slurm进行分布式训练,项目提供了自定义的SBATCH脚本来复制SeLaVi模型。
sbatch ./scripts/master.sh
请注意,可能需要从SBATCH文件中移除版权声明才能运行。
3. 应用案例和最佳实践
- 聚类质量评估:使用
get_clusters.py和clustering_metrics.py脚本来评估聚类质量。
python3 get_clusters.py \
--dataset {vggsound, kinetics, ave, kinetics_sound} \
--root_dir /path/to/dataset \
--weights_path ${WEIGHTS_PATH} \
--output_dir ${OUTPUT_DIR} \
--exp_desc ${EXP_DESC} \
--mode train \
--headcount ${HEADCOUNT}
python3 clustering_metrics.py \
--path ${OUTPUT_DIR}/${EXP_DESC}.pkl \
--ncentroids ${NUM_CLS}
- 视频动作识别:使用
finetune_video.py脚本来在视频动作识别任务上微调SeLaVi预训练模型。
python3 finetune_video.py \
--dataset {ucf101, hmdb51} \
--root_dir /path/to/dataset \
--fold {1,2,3} \
--batch_size 32 \
--workers 10 \
--weights_path ${WEIGHTS_PATH} \
--output_dir ${OUTPUT_DIR} \
--num_clusters ${NUM_CLUSTERS}
- 视频检索:使用
video_retrieval.py脚本来评估视频检索任务。
python3 video_retrieval.py \
--dataset {ucf101, hmdb51} \
--root_dir /path/to/dataset \
--fold {1,2,3} \
--batch_size 32 \
--workers 10 \
--weights_path ${WEIGHTS_PATH} \
--output_dir ${OUTPUT_DIR}
4. 典型生态项目
SeLaVi项目的生态系统中,以下是一些典型的相关开源项目:
- PyTorch:用于深度学习研究的开源框架。
- Torchvision:与PyTorch深度学习框架配套的图像处理库。
- CUDA:NVIDIA推出的并行计算平台和编程模型。
以上是SeLaVi项目的最佳实践和快速启动指南,希望对您的学习和研究有所帮助。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
198
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
426
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694