Faraday 技术文档
1. 安装指南
安装 Ruby
Faraday 是一个基于 Ruby 的 HTTP 客户端库,因此首先需要确保你的系统上已经安装了 Ruby。你可以通过以下命令检查 Ruby 是否已安装:
ruby -v
如果未安装,请根据你的操作系统选择合适的安装方法。例如,在 Ubuntu 上可以使用以下命令安装:
sudo apt-get install ruby-full
安装 Faraday
Faraday 可以通过 RubyGems 进行安装。打开终端并运行以下命令:
gem install faraday
安装完成后,你可以通过以下命令验证 Faraday 是否安装成功:
gem list faraday
2. 项目的使用说明
基本使用
Faraday 提供了一个统一的接口来处理 HTTP 请求和响应。以下是一个简单的示例,展示了如何使用 Faraday 发送一个 GET 请求:
require 'faraday'
response = Faraday.get 'http://example.com'
puts response.body
使用中间件
Faraday 支持 Rack 中间件,允许你在请求/响应周期中插入自定义逻辑。例如,你可以使用 Faraday::Response::Logger 中间件来记录请求和响应:
require 'faraday'
require 'faraday/logging/middleware'
conn = Faraday.new do |f|
f.use Faraday::Logging::Middleware
f.adapter Faraday.default_adapter
end
response = conn.get 'http://example.com'
puts response.body
使用不同的适配器
Faraday 支持多种 HTTP 适配器,如 Net::HTTP、Typhoeus、Patron 等。你可以通过配置 adapter 来选择使用哪个适配器:
require 'faraday'
conn = Faraday.new do |f|
f.adapter :typhoeus
end
response = conn.get 'http://example.com'
puts response.body
3. 项目 API 使用文档
创建连接
你可以使用 Faraday.new 创建一个新的连接对象:
conn = Faraday.new(url: 'http://example.com')
发送请求
Faraday 支持多种 HTTP 方法,如 get、post、put、delete 等。以下是一些示例:
response = conn.get '/resource'
response = conn.post '/resource', { data: 'value' }
response = conn.put '/resource/1', { data: 'new_value' }
response = conn.delete '/resource/1'
处理响应
Faraday 的响应对象包含了请求的结果,你可以通过以下方式访问响应的各个部分:
response.status # 获取 HTTP 状态码
response.body # 获取响应体
response.headers # 获取响应头
自定义中间件
你可以通过 use 方法添加自定义中间件:
conn = Faraday.new do |f|
f.use MyCustomMiddleware
f.adapter Faraday.default_adapter
end
4. 项目安装方式
Faraday 可以通过 RubyGems 进行安装,安装命令如下:
gem install faraday
安装完成后,你可以在 Ruby 项目中通过 require 'faraday' 引入 Faraday 库。
总结
Faraday 是一个功能强大的 HTTP 客户端库,提供了丰富的功能和灵活的配置选项。通过本文档,你应该能够顺利安装和使用 Faraday,并了解如何通过中间件和适配器来扩展其功能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00