Faraday 技术文档
1. 安装指南
安装 Ruby
Faraday 是一个基于 Ruby 的 HTTP 客户端库,因此首先需要确保你的系统上已经安装了 Ruby。你可以通过以下命令检查 Ruby 是否已安装:
ruby -v
如果未安装,请根据你的操作系统选择合适的安装方法。例如,在 Ubuntu 上可以使用以下命令安装:
sudo apt-get install ruby-full
安装 Faraday
Faraday 可以通过 RubyGems 进行安装。打开终端并运行以下命令:
gem install faraday
安装完成后,你可以通过以下命令验证 Faraday 是否安装成功:
gem list faraday
2. 项目的使用说明
基本使用
Faraday 提供了一个统一的接口来处理 HTTP 请求和响应。以下是一个简单的示例,展示了如何使用 Faraday 发送一个 GET 请求:
require 'faraday'
response = Faraday.get 'http://example.com'
puts response.body
使用中间件
Faraday 支持 Rack 中间件,允许你在请求/响应周期中插入自定义逻辑。例如,你可以使用 Faraday::Response::Logger
中间件来记录请求和响应:
require 'faraday'
require 'faraday/logging/middleware'
conn = Faraday.new do |f|
f.use Faraday::Logging::Middleware
f.adapter Faraday.default_adapter
end
response = conn.get 'http://example.com'
puts response.body
使用不同的适配器
Faraday 支持多种 HTTP 适配器,如 Net::HTTP
、Typhoeus
、Patron
等。你可以通过配置 adapter
来选择使用哪个适配器:
require 'faraday'
conn = Faraday.new do |f|
f.adapter :typhoeus
end
response = conn.get 'http://example.com'
puts response.body
3. 项目 API 使用文档
创建连接
你可以使用 Faraday.new
创建一个新的连接对象:
conn = Faraday.new(url: 'http://example.com')
发送请求
Faraday 支持多种 HTTP 方法,如 get
、post
、put
、delete
等。以下是一些示例:
response = conn.get '/resource'
response = conn.post '/resource', { data: 'value' }
response = conn.put '/resource/1', { data: 'new_value' }
response = conn.delete '/resource/1'
处理响应
Faraday 的响应对象包含了请求的结果,你可以通过以下方式访问响应的各个部分:
response.status # 获取 HTTP 状态码
response.body # 获取响应体
response.headers # 获取响应头
自定义中间件
你可以通过 use
方法添加自定义中间件:
conn = Faraday.new do |f|
f.use MyCustomMiddleware
f.adapter Faraday.default_adapter
end
4. 项目安装方式
Faraday 可以通过 RubyGems 进行安装,安装命令如下:
gem install faraday
安装完成后,你可以在 Ruby 项目中通过 require 'faraday'
引入 Faraday 库。
总结
Faraday 是一个功能强大的 HTTP 客户端库,提供了丰富的功能和灵活的配置选项。通过本文档,你应该能够顺利安装和使用 Faraday,并了解如何通过中间件和适配器来扩展其功能。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









