AWS Deep Learning Containers发布TensorFlow 2.16.1推理容器镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像经过优化,包含了流行的深度学习框架及其依赖项,可以帮助开发者快速部署深度学习应用。DLC镜像支持多种深度学习框架,包括TensorFlow、PyTorch、MXNet等,并针对AWS基础设施进行了专门优化。
近日,AWS DLC项目发布了TensorFlow 2.16.1推理容器镜像的两个新版本,分别针对CPU和GPU环境进行了优化。这些镜像基于Ubuntu 20.04操作系统,使用Python 3.10作为基础环境,为开发者提供了开箱即用的TensorFlow Serving推理环境。
CPU版本镜像特性
CPU版本的TensorFlow推理镜像(tensorflow-inference:2.16.1-cpu-py310-ubuntu20.04-ec2)主要包含以下技术特性:
-
基础环境:
- 操作系统:Ubuntu 20.04
- Python版本:3.10
- TensorFlow Serving API版本:2.16.1
-
关键软件包:
- 深度学习相关:Cython 0.29.37、protobuf 4.25.3
- 开发工具:setuptools 70.3.0、packaging 24.1
- AWS工具链:awscli 1.33.24、boto3 1.34.142、botocore 1.34.142
- 系统工具:PyYAML 6.0.1、requests 2.32.3
-
系统依赖:
- GCC相关:libgcc-9-dev、libgcc-s1
- C++标准库:libstdc++-9-dev、libstdc++6
- 开发工具:emacs及相关组件
GPU版本镜像特性
GPU版本的TensorFlow推理镜像(tensorflow-inference:2.16.1-gpu-py310-cu122-ubuntu20.04-ec2)在CPU版本的基础上增加了对NVIDIA GPU的支持:
-
CUDA支持:
- CUDA版本:12.2
- cuDNN版本:8
- NCCL版本:2
-
关键GPU相关软件包:
- CUDA命令行工具
- cuBLAS库及开发文件
- cuDNN库及开发文件
- NCCL通信库
-
TensorFlow Serving API:
- 使用GPU专用版本:tensorflow-serving-api-gpu 2.16.1
技术优势与应用场景
这些预构建的TensorFlow推理容器镜像具有以下优势:
-
开箱即用:开发者无需花费时间配置复杂的依赖环境,可以直接使用这些镜像部署TensorFlow模型服务。
-
性能优化:镜像针对AWS EC2实例进行了优化,能够充分发挥底层硬件性能。
-
版本管理:提供了明确的版本标签系统,便于开发者在不同环境间保持一致性。
-
安全更新:基于Ubuntu 20.04 LTS,可以获得长期安全支持。
这些镜像特别适合以下应用场景:
- 生产环境中的模型服务部署
- 大规模推理任务
- 需要快速扩展的AI服务
- 需要与AWS服务深度集成的AI应用
使用建议
对于需要使用TensorFlow 2.16.1进行模型推理的用户,建议根据实际需求选择合适的镜像版本:
-
对于纯CPU推理任务,使用CPU版本镜像即可满足需求,资源消耗更低。
-
对于需要GPU加速的推理任务,特别是涉及大模型或高吞吐量的场景,建议使用GPU版本镜像以获得最佳性能。
-
在AWS环境中部署时,可以结合EC2 Auto Scaling和Elastic Load Balancing等服务构建高可用的推理服务。
这些预构建的DLC镜像大大简化了TensorFlow模型服务的部署流程,使开发者能够专注于模型开发和业务逻辑,而不必花费大量时间在环境配置上。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00