解决jetson-containers项目中langchain:samples容器的依赖问题
2025-06-27 15:40:29作者:房伟宁
问题背景
在jetson-containers项目中,langchain:samples容器是基于langchain:r35.4.1构建的,理论上应该包含pytorch、llama_cpp和langchain等依赖项。然而用户在实际使用中发现这些关键Python包并未正确安装,导致无法运行容器中的示例代码。
问题表现
当用户在langchain:samples容器中尝试导入关键Python包时,遇到了以下错误:
- 导入torch失败:
ModuleNotFoundError: No module named 'torch'
- 导入langchain失败:
ModuleNotFoundError: No module named 'langchain'
- 运行示例笔记本LangChain_Local-LLMs.ipynb时,同样因为缺少langchain模块而失败。
问题根源
经过分析,这个问题是由于容器构建过程中依赖项未正确安装导致的。虽然langchain:samples容器声明了需要安装build-essential、cuda、cudnn、python、tensorrt、numpy、cmake、onnx、pytorch、huggingface_hub、llama_cpp、langchain、rust和jupyterlab等依赖,但在实际构建过程中这些Python包并未被正确安装到容器中。
解决方案
项目维护者通过提交修复了这个构建问题。修复内容包括:
- 确保在构建过程中正确安装所有声明的Python依赖项
- 验证torch、langchain等关键包的正确安装
- 重新构建并推送所有JP5/JP6版本的容器到容器镜像仓库
额外发现的问题
在用户尝试自行构建容器时,还遇到了llama_cpp相关的构建错误:
OSError: libcuda.so.1: cannot open shared object file: No such file or directory
这个问题的原因是Docker默认运行时未正确设置为nvidia,导致构建过程中无法访问CUDA库。
完整解决方案
要完全解决这些问题,需要执行以下步骤:
-
确保使用最新修复后的容器镜像
-
设置Docker默认运行时为nvidia:
- 编辑Docker配置文件
- 添加nvidia作为默认运行时
- 重启Docker服务
-
验证环境配置:
- 确认CUDA库可访问
- 检查torch、langchain等Python包可正常导入
- 测试示例笔记本能正常运行
技术要点
- 容器构建过程中依赖项管理的重要性
- Docker运行时配置对GPU加速应用的影响
- Jetson平台特有的CUDA库路径问题
- Python虚拟环境与系统Python环境的隔离
最佳实践建议
- 在构建自定义容器前,始终检查基础镜像的完整性
- 对于GPU加速应用,确保正确配置Docker运行时
- 使用容器前验证关键依赖项的可用性
- 定期更新容器镜像以获取最新修复
通过遵循这些步骤和建议,用户可以确保jetson-containers项目中的langchain相关容器能够正常工作,充分发挥Jetson平台的AI加速能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248