Unsloth项目中保存和加载多模态大模型时的常见问题解析
2025-05-03 10:16:52作者:裴锟轩Denise
问题背景
在使用Unsloth项目对多模态大语言模型(LLM)进行微调后,开发者在尝试保存和加载模型时遇到了几个关键问题。这些问题主要出现在使用save_pretrained_merged和push_to_hub_merged方法时,导致模型无法正确加载和使用。
主要问题表现
-
文件缺失问题:保存模型时缺少多个关键配置文件,包括:
- tokenizer.json
- tokenizer_config.json
- special_tokens_map.json
- model.safetensors.index
- preprocessor_config.json
- chat_template.json
-
加载错误:尝试加载保存的模型时出现错误提示:"Supplied state dict for vision_model.global_transformer.layers.0.mlp.fc1.weight does not contain
bitsandbytes__*and possibly otherquantized_statscomponents",这表明量化相关参数丢失。
技术分析
文件缺失原因
当前Unsloth的保存机制存在以下流程缺陷:
- 仅保存tokenizer和模型配置到文件夹
- 将文件夹推送到Hub
- 仅下载原始模型的safetensor文件
- 应用LoRA修改后单独推送每个修复的safetensor文件
这种实现方式导致原始模型的其他支持文件没有被包含在最终输出中,从而造成文件缺失问题。
量化加载错误
错误信息表明模型在保存过程中丢失了量化相关的统计信息(quantized_stats),特别是bitsandbytes__*参数。这通常发生在:
- 动态量化过程中参数保存不完整
- 模型状态字典转换时量化参数被忽略
- 不同量化方案间的兼容性问题
解决方案
临时解决方案
开发者发现可以手动从原始模型复制缺失的文件来解决大部分问题,但safetensors.index文件仍可能缺失,且量化错误依然存在。
预期官方修复
项目维护者已确认这是一个需要修复的问题,计划改进保存机制以确保:
- 完整下载原始模型的所有相关文件
- 正确处理量化参数的保存和加载
- 确保所有配置文件被正确包含在最终输出中
最佳实践建议
在使用Unsloth进行模型微调和保存时,建议:
- 检查保存后的模型是否包含所有必要文件
- 对于量化模型,验证量化参数是否被正确保存
- 考虑备份原始模型文件以便手动修复
- 关注项目更新以获取修复版本
总结
Unsloth项目在保存合并后的多模态大模型时存在文件缺失和量化参数保存问题,这会影响模型的后续加载和使用。开发者需要了解这些问题并采取相应措施,同时期待官方修复能彻底解决这些问题。对于依赖量化功能的用户,建议暂时谨慎使用相关保存功能,或采用手动补充文件的方式作为临时解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135