LMFlow项目微调Qwen1.5模型时输出重复问题的分析与解决方案
2025-05-27 05:55:19作者:彭桢灵Jeremy
在基于LMFlow框架对Qwen1.5-1.8B-Base模型进行微调时,开发者可能会遇到模型输出重复内容的问题。本文将从技术原理、问题分析和解决方案三个维度深入探讨这一现象。
问题现象分析
当使用约20万条text2text格式的数据对Qwen1.5基础模型进行微调后,在CMMLU等评测任务中会出现明显的输出重复现象。典型表现为模型在给出答案后会重复生成相似的问答对,例如:
答案是: C
Human:以下是关于农学的单项选择题...
Assistant:答案是: D
Human:以下是关于农学的单项选择题...
根本原因
- 数据格式适配问题:基础模型未经对话格式预训练,直接使用text2text格式微调时,模型难以学习到对话终止的逻辑
- 停止机制缺失:未设置有效的停止生成条件,导致模型持续预测
- 模板不匹配:Qwen1.5-Chat版本使用特定对话模板,基础模型微调时若未采用相应模板会导致行为异常
解决方案
短期解决方案:强制停止生成
通过实现StoppingCriteria来定义停止条件:
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, tokenizer, stops=[]):
super().__init__()
self.stops = [stop.to("cuda") for stop in stops]
self.tokenizer = tokenizer
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
last_token = input_ids[0][-1]
for stop in self.stops:
if self.tokenizer.decode(stop) == self.tokenizer.decode(last_token):
return True
return False
长期优化建议
-
采用对话数据集格式:
- 将text2text数据转换为标准的对话格式
- 使用qwen2对话模板参数(--conversation_template qwen2)
- 确保输入输出采用与预训练一致的格式
-
模型选择建议:
- 优先使用Qwen1.5-Chat系列作为基础模型
- 对于基础模型微调,建议准备更大规模(50万+)的优质数据
-
训练技巧:
- 设置合理的max_new_tokens参数
- 配合temperature等生成参数调整输出多样性
- 添加显式的终止标记(如"###")并设置对应的end_string
实施建议
对于实际项目部署,推荐采用以下最佳实践路径:
- 首先将现有text2text数据转换为标准对话格式
- 使用Qwen1.5-Chat模型作为基础
- 在LMFlow框架中明确指定qwen2模板
- 训练时设置合理的生成控制参数
- 部署时实现完善的停止生成逻辑
通过以上方法,可以有效解决输出重复问题,同时提升模型在专业领域的表现能力。对于中文场景下的模型微调,特别注意对话模板的本土化适配是取得良好效果的关键因素之一。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1