LMFlow项目微调Qwen1.5模型时输出重复问题的分析与解决方案
2025-05-27 21:44:43作者:彭桢灵Jeremy
在基于LMFlow框架对Qwen1.5-1.8B-Base模型进行微调时,开发者可能会遇到模型输出重复内容的问题。本文将从技术原理、问题分析和解决方案三个维度深入探讨这一现象。
问题现象分析
当使用约20万条text2text格式的数据对Qwen1.5基础模型进行微调后,在CMMLU等评测任务中会出现明显的输出重复现象。典型表现为模型在给出答案后会重复生成相似的问答对,例如:
答案是: C
Human:以下是关于农学的单项选择题...
Assistant:答案是: D
Human:以下是关于农学的单项选择题...
根本原因
- 数据格式适配问题:基础模型未经对话格式预训练,直接使用text2text格式微调时,模型难以学习到对话终止的逻辑
- 停止机制缺失:未设置有效的停止生成条件,导致模型持续预测
- 模板不匹配:Qwen1.5-Chat版本使用特定对话模板,基础模型微调时若未采用相应模板会导致行为异常
解决方案
短期解决方案:强制停止生成
通过实现StoppingCriteria来定义停止条件:
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, tokenizer, stops=[]):
super().__init__()
self.stops = [stop.to("cuda") for stop in stops]
self.tokenizer = tokenizer
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
last_token = input_ids[0][-1]
for stop in self.stops:
if self.tokenizer.decode(stop) == self.tokenizer.decode(last_token):
return True
return False
长期优化建议
-
采用对话数据集格式:
- 将text2text数据转换为标准的对话格式
- 使用qwen2对话模板参数(--conversation_template qwen2)
- 确保输入输出采用与预训练一致的格式
-
模型选择建议:
- 优先使用Qwen1.5-Chat系列作为基础模型
- 对于基础模型微调,建议准备更大规模(50万+)的优质数据
-
训练技巧:
- 设置合理的max_new_tokens参数
- 配合temperature等生成参数调整输出多样性
- 添加显式的终止标记(如"###")并设置对应的end_string
实施建议
对于实际项目部署,推荐采用以下最佳实践路径:
- 首先将现有text2text数据转换为标准对话格式
- 使用Qwen1.5-Chat模型作为基础
- 在LMFlow框架中明确指定qwen2模板
- 训练时设置合理的生成控制参数
- 部署时实现完善的停止生成逻辑
通过以上方法,可以有效解决输出重复问题,同时提升模型在专业领域的表现能力。对于中文场景下的模型微调,特别注意对话模板的本土化适配是取得良好效果的关键因素之一。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0361Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
191
2.15 K

React Native鸿蒙化仓库
C++
205
284

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

Ascend Extension for PyTorch
Python
58
89

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
967
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
192

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
392
23