ggplot2图形设计:色彩运用全攻略
2025-06-02 07:04:22作者:晏闻田Solitary
本文基于rstudio-conf-2022/ggplot2-graphic-design项目中关于色彩运用的内容,将全面介绍如何在ggplot2中有效使用色彩来提升数据可视化效果。
准备工作
在开始之前,我们需要加载必要的R包和数据集:
library(tidyverse)
bikes <- readr::read_csv("london-bikes-custom.csv",
col_types = "Dcfffilllddddc")
bikes$season <- forcats::fct_inorder(bikes$season)
theme_set(theme_light(base_size = 14, base_family = "Roboto Condensed"))
预定义调色板
ggplot2提供了多种预定义调色板,让我们能够快速创建美观的图表。
Viridis调色板
Viridis调色板是专为数据可视化设计的,具有以下特点:
- 色彩感知均匀
- 对色盲友好
- 黑白打印时仍能区分
ggplot(bikes, aes(x = day_night, y = count, fill = season)) +
geom_boxplot() +
scale_fill_viridis_d(option = "plasma", begin = .3)
option
参数可以选择不同风格的Viridis调色板:
- "viridis" (默认)
- "plasma"
- "magma"
- "inferno"
- "cividis"
Brewer调色板
RColorBrewer提供了多种精心设计的调色板:
ggplot(bikes, aes(x = day_night, y = count, fill = season)) +
geom_boxplot() +
scale_fill_brewer(palette = "Set1")
Brewer调色板分为三类:
- 顺序调色板(Sequential):适合有序数据
- 发散调色板(Diverging):适合有中间值的数据
- 定性调色板(Qualitative):适合分类数据
第三方调色板扩展
除了内置调色板,还有许多优秀的第三方调色板扩展包。
rcartocolor
提供CARTO设计的调色板,对色盲友好:
library(rcartocolor)
ggplot(bikes, aes(x = day_night, y = count, fill = season)) +
geom_boxplot() +
rcartocolor::scale_fill_carto_d(palette = "Vivid")
scico
基于科学可视化研究的调色板:
library(scico)
ggplot(bikes, aes(x = day_night, y = count, fill = season)) +
geom_boxplot() +
scico::scale_fill_scico_d(palette = "hawaii")
MetBrewer
受著名艺术作品启发的调色板:
library(MetBrewer)
ggplot(bikes, aes(x = day_night, y = count, fill = season)) +
geom_boxplot() +
MetBrewer::scale_fill_met_d(name = "Klimt")
自定义调色板
修改现有调色板
我们可以提取调色板中的特定颜色或调整亮度:
library(rcartocolor)
carto_custom <- carto_pal(name = "Vivid", n = 6)[c(1, 3:5)]
ggplot(bikes, aes(x = day_night, y = count, fill = season)) +
geom_boxplot() +
scale_fill_manual(values = carto_custom)
使用after_scale
可以在绘图后动态调整颜色:
ggplot(bikes, aes(x = day_night, y = count)) +
geom_boxplot(
aes(fill = season,
fill = after_scale(lighten(fill, .8)))
) +
scale_fill_manual(values = carto_custom)
创建渐变调色板
ggplot2提供了多种创建渐变调色板的方法:
- 简单双色渐变:
scale_color_gradient(low = "#28A87D", high = "#FFD166")
- 三色发散渐变:
scale_color_gradient2(low = "#663399", high = "#993334", mid = "grey95")
- 多色自定义渐变:
scale_color_gradientn(colors = carto_custom)
创建自定义scale函数
我们可以封装自己的调色板为scale函数,方便重复使用:
# 定义颜色集
dubois_colors <- function(...) {
dubois_cols <- c(
`black` = "#000000",
`purple` = "#582f6c",
`violet` = "#94679C",
`pink` = "#ef849f",
`softred` = "#f4b7a7",
`iceblue` = "#bccbf3",
`palegrey` = "#e4e4e4"
)
cols <- c(...)
if (is.null(cols)) return(dubois_cols)
dubois_cols[cols]
}
# 创建调色板函数
dubois_pal_d <- function(palette = "default", reverse = FALSE) {
function(n) {
if(n > 5) stop('Palettes only contains 5 colors')
if (palette == "default") { pal <- dubois_colors("black", "violet", "softred", "iceblue", "palegrey")[1:n] }
pal <- unname(pal)
if (reverse) rev(pal) else pal
}
}
# 创建scale函数
scale_fill_dubois_d <- function(palette = "default", reverse = FALSE, ...) {
pal <- dubois_pal_d(palette = palette, reverse = reverse)
ggplot2::discrete_scale("fill", paste0("dubois_", palette), palette = pal, ...)
}
使用自定义scale函数:
ggplot(bikes, aes(x = day_night, y = count, fill = season)) +
geom_boxplot() +
scale_fill_dubois_d()
色彩无障碍设计
在设计调色板时,应考虑色盲用户的体验:
# 模拟色盲视图
deut <- colorspace::deutan(viridis::turbo(n = 100, direction = -1))
ggplot(bikes, aes(x = temp_feel, y = count, color = temp_feel)) +
geom_point() +
scale_color_gradientn(colors = deut)
许多调色板包(如rcartocolor、MetBrewer)都提供了色盲友好的选项。
总结
本文介绍了ggplot2中丰富的色彩运用方法,包括:
- 使用内置和第三方调色板
- 自定义和修改现有调色板
- 创建渐变调色板
- 封装自定义scale函数
- 色彩无障碍设计
合理运用色彩可以显著提升数据可视化的表现力和信息传达效果。建议在实际项目中多尝试不同的调色方案,并考虑最终用户的可视化体验。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K