ggplot2图形设计:色彩运用全攻略
2025-06-02 06:20:15作者:晏闻田Solitary
本文基于rstudio-conf-2022/ggplot2-graphic-design项目中关于色彩运用的内容,将全面介绍如何在ggplot2中有效使用色彩来提升数据可视化效果。
准备工作
在开始之前,我们需要加载必要的R包和数据集:
library(tidyverse)
bikes <- readr::read_csv("london-bikes-custom.csv",
col_types = "Dcfffilllddddc")
bikes$season <- forcats::fct_inorder(bikes$season)
theme_set(theme_light(base_size = 14, base_family = "Roboto Condensed"))
预定义调色板
ggplot2提供了多种预定义调色板,让我们能够快速创建美观的图表。
Viridis调色板
Viridis调色板是专为数据可视化设计的,具有以下特点:
- 色彩感知均匀
- 对色盲友好
- 黑白打印时仍能区分
ggplot(bikes, aes(x = day_night, y = count, fill = season)) +
geom_boxplot() +
scale_fill_viridis_d(option = "plasma", begin = .3)
option参数可以选择不同风格的Viridis调色板:
- "viridis" (默认)
- "plasma"
- "magma"
- "inferno"
- "cividis"
Brewer调色板
RColorBrewer提供了多种精心设计的调色板:
ggplot(bikes, aes(x = day_night, y = count, fill = season)) +
geom_boxplot() +
scale_fill_brewer(palette = "Set1")
Brewer调色板分为三类:
- 顺序调色板(Sequential):适合有序数据
- 发散调色板(Diverging):适合有中间值的数据
- 定性调色板(Qualitative):适合分类数据
第三方调色板扩展
除了内置调色板,还有许多优秀的第三方调色板扩展包。
rcartocolor
提供CARTO设计的调色板,对色盲友好:
library(rcartocolor)
ggplot(bikes, aes(x = day_night, y = count, fill = season)) +
geom_boxplot() +
rcartocolor::scale_fill_carto_d(palette = "Vivid")
scico
基于科学可视化研究的调色板:
library(scico)
ggplot(bikes, aes(x = day_night, y = count, fill = season)) +
geom_boxplot() +
scico::scale_fill_scico_d(palette = "hawaii")
MetBrewer
受著名艺术作品启发的调色板:
library(MetBrewer)
ggplot(bikes, aes(x = day_night, y = count, fill = season)) +
geom_boxplot() +
MetBrewer::scale_fill_met_d(name = "Klimt")
自定义调色板
修改现有调色板
我们可以提取调色板中的特定颜色或调整亮度:
library(rcartocolor)
carto_custom <- carto_pal(name = "Vivid", n = 6)[c(1, 3:5)]
ggplot(bikes, aes(x = day_night, y = count, fill = season)) +
geom_boxplot() +
scale_fill_manual(values = carto_custom)
使用after_scale可以在绘图后动态调整颜色:
ggplot(bikes, aes(x = day_night, y = count)) +
geom_boxplot(
aes(fill = season,
fill = after_scale(lighten(fill, .8)))
) +
scale_fill_manual(values = carto_custom)
创建渐变调色板
ggplot2提供了多种创建渐变调色板的方法:
- 简单双色渐变:
scale_color_gradient(low = "#28A87D", high = "#FFD166")
- 三色发散渐变:
scale_color_gradient2(low = "#663399", high = "#993334", mid = "grey95")
- 多色自定义渐变:
scale_color_gradientn(colors = carto_custom)
创建自定义scale函数
我们可以封装自己的调色板为scale函数,方便重复使用:
# 定义颜色集
dubois_colors <- function(...) {
dubois_cols <- c(
`black` = "#000000",
`purple` = "#582f6c",
`violet` = "#94679C",
`pink` = "#ef849f",
`softred` = "#f4b7a7",
`iceblue` = "#bccbf3",
`palegrey` = "#e4e4e4"
)
cols <- c(...)
if (is.null(cols)) return(dubois_cols)
dubois_cols[cols]
}
# 创建调色板函数
dubois_pal_d <- function(palette = "default", reverse = FALSE) {
function(n) {
if(n > 5) stop('Palettes only contains 5 colors')
if (palette == "default") { pal <- dubois_colors("black", "violet", "softred", "iceblue", "palegrey")[1:n] }
pal <- unname(pal)
if (reverse) rev(pal) else pal
}
}
# 创建scale函数
scale_fill_dubois_d <- function(palette = "default", reverse = FALSE, ...) {
pal <- dubois_pal_d(palette = palette, reverse = reverse)
ggplot2::discrete_scale("fill", paste0("dubois_", palette), palette = pal, ...)
}
使用自定义scale函数:
ggplot(bikes, aes(x = day_night, y = count, fill = season)) +
geom_boxplot() +
scale_fill_dubois_d()
色彩无障碍设计
在设计调色板时,应考虑色盲用户的体验:
# 模拟色盲视图
deut <- colorspace::deutan(viridis::turbo(n = 100, direction = -1))
ggplot(bikes, aes(x = temp_feel, y = count, color = temp_feel)) +
geom_point() +
scale_color_gradientn(colors = deut)
许多调色板包(如rcartocolor、MetBrewer)都提供了色盲友好的选项。
总结
本文介绍了ggplot2中丰富的色彩运用方法,包括:
- 使用内置和第三方调色板
- 自定义和修改现有调色板
- 创建渐变调色板
- 封装自定义scale函数
- 色彩无障碍设计
合理运用色彩可以显著提升数据可视化的表现力和信息传达效果。建议在实际项目中多尝试不同的调色方案,并考虑最终用户的可视化体验。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0113
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
432
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
351
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
689
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
79
37
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
671