Open-Sora项目中VAE视频压缩的内存优化实践
2025-05-08 15:05:25作者:昌雅子Ethen
在Open-Sora项目开发过程中,我们遇到了视频压缩模型训练时的内存优化问题。本文将详细介绍从VQVAE到VAE的模型转换过程中遇到的内存溢出(OOM)问题及其解决方案。
背景与问题描述
最初,项目团队使用VQVAE(Vector Quantized Variational Autoencoder)进行视频压缩任务。虽然模型能够正常运行,但训练过程中发现损失函数下降速度过慢,影响了模型收敛效率。为此,团队决定将模型架构改为标准VAE(Variational Autoencoder)。
然而,在切换到VAE后,即使将batch_size和accumulation_steps都设置为1,仍然出现了内存不足(OOM)的问题。这种情况在深度学习模型训练中并不罕见,特别是在处理视频这类高维数据时。
技术分析与解决方案
经过深入分析,我们发现VAE相比VQVAE在内存使用上有几个关键差异:
- 隐变量分布:VAE需要维护连续的隐变量分布,而VQVAE使用离散的编码本,这增加了内存开销
- KL散度计算:VAE需要计算隐变量的KL散度项,这会增加反向传播时的内存需求
- 梯度计算:VAE的随机采样操作需要保留完整的计算图,而VQVAE的量化操作可以断开部分计算图
针对这一问题,Open-Sora项目团队提出了有效的解决方案:使用micro_batch_size参数。通过在推理配置中设置micro_batch_size,可以将一个大batch拆分成多个小batch依次处理,从而显著降低峰值内存使用量。
实践建议
对于在Open-Sora项目或其他视频生成项目中遇到类似问题的开发者,我们建议:
- 优先尝试调整micro_batch_size参数,这是最直接有效的内存优化手段
- 可以考虑混合精度训练,进一步降低内存需求
- 对于特别大的视频数据,可以先进行下采样预处理
- 监控训练过程中的显存使用情况,及时发现潜在问题
总结
从VQVAE到VAE的转换过程中,Open-Sora项目团队成功解决了内存优化问题。这一经验表明,在深度学习模型开发中,架构变更可能带来意料之外的计算资源需求变化,需要开发者具备全面的性能调优能力。通过合理的batch划分策略,我们可以在有限的计算资源下训练更强大的视频生成模型。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133