Open-Sora项目中VAE视频压缩的内存优化实践
2025-05-08 05:00:31作者:昌雅子Ethen
在Open-Sora项目开发过程中,我们遇到了视频压缩模型训练时的内存优化问题。本文将详细介绍从VQVAE到VAE的模型转换过程中遇到的内存溢出(OOM)问题及其解决方案。
背景与问题描述
最初,项目团队使用VQVAE(Vector Quantized Variational Autoencoder)进行视频压缩任务。虽然模型能够正常运行,但训练过程中发现损失函数下降速度过慢,影响了模型收敛效率。为此,团队决定将模型架构改为标准VAE(Variational Autoencoder)。
然而,在切换到VAE后,即使将batch_size和accumulation_steps都设置为1,仍然出现了内存不足(OOM)的问题。这种情况在深度学习模型训练中并不罕见,特别是在处理视频这类高维数据时。
技术分析与解决方案
经过深入分析,我们发现VAE相比VQVAE在内存使用上有几个关键差异:
- 隐变量分布:VAE需要维护连续的隐变量分布,而VQVAE使用离散的编码本,这增加了内存开销
- KL散度计算:VAE需要计算隐变量的KL散度项,这会增加反向传播时的内存需求
- 梯度计算:VAE的随机采样操作需要保留完整的计算图,而VQVAE的量化操作可以断开部分计算图
针对这一问题,Open-Sora项目团队提出了有效的解决方案:使用micro_batch_size参数。通过在推理配置中设置micro_batch_size,可以将一个大batch拆分成多个小batch依次处理,从而显著降低峰值内存使用量。
实践建议
对于在Open-Sora项目或其他视频生成项目中遇到类似问题的开发者,我们建议:
- 优先尝试调整micro_batch_size参数,这是最直接有效的内存优化手段
- 可以考虑混合精度训练,进一步降低内存需求
- 对于特别大的视频数据,可以先进行下采样预处理
- 监控训练过程中的显存使用情况,及时发现潜在问题
总结
从VQVAE到VAE的转换过程中,Open-Sora项目团队成功解决了内存优化问题。这一经验表明,在深度学习模型开发中,架构变更可能带来意料之外的计算资源需求变化,需要开发者具备全面的性能调优能力。通过合理的batch划分策略,我们可以在有限的计算资源下训练更强大的视频生成模型。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355