首页
/ Swift项目中使用Qwen2.5-VL-3B-Instruct模型进行RLHF训练的问题分析与解决方案

Swift项目中使用Qwen2.5-VL-3B-Instruct模型进行RLHF训练的问题分析与解决方案

2025-05-30 19:44:28作者:幸俭卉

问题背景

在Swift项目中进行强化学习人类反馈(RLHF)训练时,使用Qwen2.5-VL-3B-Instruct多模态大语言模型遇到了两个关键问题。这些问题主要出现在模型权重加载和奖励函数调用阶段。

第一个问题:权重加载失败

错误现象

系统报错显示无法找到'visual.patch_embed.proj.weight'这个关键权重参数,导致模型加载失败。

原因分析

这个问题通常是由于transformers库版本不兼容导致的。Qwen2.5-VL这类多模态模型对transformers库的版本有特定要求,较新或较旧的版本可能无法正确解析模型结构。

解决方案

将transformers库降级到4.51.3版本可以解决此问题。这个版本经过验证能够正确识别Qwen2.5-VL模型的视觉编码器部分的结构。

第二个问题:奖励函数调用参数缺失

错误现象

在模型权重加载问题解决后,系统又报告MultiModalAccuracyORM奖励函数调用时缺少'solution'参数。

深入分析

这个问题揭示了RLHF训练流程中的一个关键环节问题。在多模态RLHF训练中,奖励函数需要同时考虑文本和视觉输入的评价标准。MultiModalAccuracyORM奖励函数设计时需要同时接收生成的文本补全和标准答案(solution)作为输入参数,但当前配置中缺少了标准答案的传递。

解决方案思路

  1. 检查训练数据集的格式,确保包含标准答案字段
  2. 修改奖励函数调用逻辑,确保正确传递solution参数
  3. 考虑多模态评价的特殊性,可能需要设计更复杂的奖励计算方式

技术建议

对于使用Swift项目进行多模态大模型RLHF训练的用户,建议:

  1. 严格遵循模型要求的依赖版本
  2. 仔细设计多模态奖励函数,考虑视觉和文本两个维度的评价
  3. 在训练前充分验证数据格式是否符合奖励函数的要求
  4. 对于Qwen2.5-VL这类多模态模型,建议先在单模态任务上验证流程,再扩展到多模态场景

总结

多模态大语言模型的RLHF训练面临比纯文本模型更复杂的挑战,需要特别关注模型加载兼容性和多模态奖励设计。通过控制依赖版本和仔细设计训练流程,可以逐步解决这些问题,实现有效的多模态对齐训练。

登录后查看全文
热门项目推荐
相关项目推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8