OpenSpiel项目中N皇后问题的强化学习实现探讨
2025-06-13 08:09:46作者:钟日瑜
引言
在强化学习研究领域,如何将经典组合问题转化为适合强化学习算法训练的环境是一个值得探索的方向。本文基于OpenSpiel游戏框架,深入探讨了N皇后问题的强化学习实现方案。
N皇后问题概述
N皇后问题要求在N×N的棋盘上放置N个皇后,使得它们互不攻击。在国际象棋规则下,皇后可以横向、纵向和斜向移动任意格数,因此需要确保没有两个皇后位于同一行、同一列或同一对角线上。
实现方案分析
单智能体方案
最直接的实现方式是采用单智能体模型,其中:
- 智能体依次选择放置皇后的位置
- 每次行动后检查新放置的皇后是否威胁到已有皇后
- 若放置位置非法则游戏结束,智能体获得负奖励
- 成功放置所有皇后则获得正奖励
优化后的单智能体方案
经过讨论,更优的实现方式是:
- 只允许智能体选择当前合法的位置(不被任何已有皇后威胁的位置)
- 当无合法位置可选但仍有皇后需要放置时,游戏结束且智能体失败
- 成功放置所有皇后则智能体获胜
这种方案避免了无效探索,提高了学习效率。
双智能体方案
虽然理论上可以设计为双智能体对抗:
- 一个智能体负责放置皇后
- 另一个智能体负责移除被威胁的位置 但实践表明这种设计不会带来学习优势,反而增加了复杂度。
技术实现建议
在OpenSpiel框架中实现时,建议:
-
继承现有游戏类(如Tic-Tac-Toe或Breakthrough)作为基础
-
实现核心方法:
- CurrentPlayer始终返回1(单玩家)或终止状态
- 状态中维护剩余皇后数和合法移动列表
- ApplyMove方法放置皇后并更新合法位置列表
- 当合法移动列表为空时标记为终止状态
-
可考虑将棋盘大小N作为参数,提高代码通用性
优化技巧
- 对称性利用:由于棋盘具有90度旋转对称性,初始移动可限制在一个象限内,将初始分支因子减少4倍
- 反射对称消除:可进一步消除反射对称情况,但实现复杂度较高
挑战与思考
N皇后问题对强化学习算法提出了特殊挑战:
- 稀疏奖励:绝大多数行动路径都会导致失败,信号稀疏
- 上下文依赖:单个移动的价值完全取决于整体解决方案路径
- 组合爆炸:随着N增大,状态空间快速增长
这些问题使得N皇后成为研究强化学习在组合问题上应用的理想测试平台。
结论
在OpenSpiel框架中实现N皇后问题,采用优化的单智能体方案是最佳选择。通过精心设计状态表示和合法动作空间,可以构建出适合强化学习算法训练的环境。虽然问题本身具有挑战性,但正是这种特性使其成为研究算法在组合优化问题上表现的理想测试案例。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
308
2.71 K
仓颉编译器源码及 cjdb 调试工具。
C++
123
795
暂无简介
Dart
598
132
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
461
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.07 K
616
Ascend Extension for PyTorch
Python
141
170
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
773
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232