OLSRR项目中的回归影响力分析指南
2025-07-07 10:43:00作者:何举烈Damon
引言
在回归分析中,单个异常观测值可能会对模型结果产生不成比例的巨大影响。作为数据分析师,我们需要识别这些有影响力的观测点,并在解释模型结果时予以特别关注。rsquaredacademy/olsrr项目提供了一套完整的工具集,专门用于检测线性回归模型中的影响力观测值。
影响力分析基础概念
在深入具体方法之前,我们需要理解几个关键概念:
- 杠杆值(Leverage):反映一个观测点在自变量空间中的异常程度
- 残差(Residual):观测值与模型预测值之间的差异
- 影响力(Influence):一个观测点对模型参数估计的综合影响程度
Cook距离分析
Cook距离条形图
Cook距离是最常用的影响力度量指标之一,它综合考虑了杠杆值和残差大小:
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_cooksd_bar(model)
该函数会生成一个条形图,直观展示每个观测点的Cook距离值。通常,我们关注那些Cook距离明显高于其他点的观测值。
Cook距离图表
与条形图不同,Cook距离图表提供了另一种可视化方式:
ols_plot_cooksd_chart(model)
这个图表特别适合快速识别超出临界值的异常点。
DFBETAs分析
DFBETAs衡量的是删除某个观测点后模型参数估计值的变化程度:
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_dfbetas(model)
该函数会为每个预测变量生成一个面板图,显示每个观测点对各个参数估计的影响。通常,绝对值大于2/√n的值需要特别关注。
DFFITS分析
DFFITS测量的是删除某个观测点后预测值的变化:
ols_plot_dffits(model)
临界值通常设为2√(p/n),其中p是参数个数,n是样本量。超出此值的点可能对模型预测有显著影响。
残差分析
学生化残差图
学生化残差有助于识别Y方向的异常值:
ols_plot_resid_stud(model)
绝对值大于3的学生化残差通常被视为异常值。
标准化残差图
标准化残差是另一种检测异常值的方法:
ols_plot_resid_stand(model)
综合诊断图
学生化残差与杠杆值图
这个图形结合了残差和杠杆值信息:
ols_plot_resid_lev(model)
右上角的点既具有高杠杆值又有大残差,需要特别注意。
删除学生化残差与拟合值图
ols_plot_resid_stud_fit(model)
该图有助于识别影响模型拟合的异常点。
高级诊断工具
Hadi图
Hadi影响力测度同时考虑响应变量和预测变量的异常:
ols_plot_hadi(model)
潜在残差图
该图帮助区分高杠杆点、异常点或两者兼具的点:
ols_plot_resid_pot(model)
实践建议
- 不要机械地删除所有被标记的异常点,应先检查数据质量
- 考虑异常点的业务含义,有时它们可能包含重要信息
- 可以尝试稳健回归方法替代普通最小二乘法
- 对于高杠杆点,考虑是否需要变换变量或增加样本
通过系统应用这些诊断工具,分析师可以全面评估回归模型的稳健性,确保分析结果可靠可信。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322