OLSRR项目中的回归影响力分析指南
2025-07-07 18:38:59作者:何举烈Damon
引言
在回归分析中,单个异常观测值可能会对模型结果产生不成比例的巨大影响。作为数据分析师,我们需要识别这些有影响力的观测点,并在解释模型结果时予以特别关注。rsquaredacademy/olsrr项目提供了一套完整的工具集,专门用于检测线性回归模型中的影响力观测值。
影响力分析基础概念
在深入具体方法之前,我们需要理解几个关键概念:
- 杠杆值(Leverage):反映一个观测点在自变量空间中的异常程度
- 残差(Residual):观测值与模型预测值之间的差异
- 影响力(Influence):一个观测点对模型参数估计的综合影响程度
Cook距离分析
Cook距离条形图
Cook距离是最常用的影响力度量指标之一,它综合考虑了杠杆值和残差大小:
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_cooksd_bar(model)
该函数会生成一个条形图,直观展示每个观测点的Cook距离值。通常,我们关注那些Cook距离明显高于其他点的观测值。
Cook距离图表
与条形图不同,Cook距离图表提供了另一种可视化方式:
ols_plot_cooksd_chart(model)
这个图表特别适合快速识别超出临界值的异常点。
DFBETAs分析
DFBETAs衡量的是删除某个观测点后模型参数估计值的变化程度:
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_dfbetas(model)
该函数会为每个预测变量生成一个面板图,显示每个观测点对各个参数估计的影响。通常,绝对值大于2/√n的值需要特别关注。
DFFITS分析
DFFITS测量的是删除某个观测点后预测值的变化:
ols_plot_dffits(model)
临界值通常设为2√(p/n),其中p是参数个数,n是样本量。超出此值的点可能对模型预测有显著影响。
残差分析
学生化残差图
学生化残差有助于识别Y方向的异常值:
ols_plot_resid_stud(model)
绝对值大于3的学生化残差通常被视为异常值。
标准化残差图
标准化残差是另一种检测异常值的方法:
ols_plot_resid_stand(model)
综合诊断图
学生化残差与杠杆值图
这个图形结合了残差和杠杆值信息:
ols_plot_resid_lev(model)
右上角的点既具有高杠杆值又有大残差,需要特别注意。
删除学生化残差与拟合值图
ols_plot_resid_stud_fit(model)
该图有助于识别影响模型拟合的异常点。
高级诊断工具
Hadi图
Hadi影响力测度同时考虑响应变量和预测变量的异常:
ols_plot_hadi(model)
潜在残差图
该图帮助区分高杠杆点、异常点或两者兼具的点:
ols_plot_resid_pot(model)
实践建议
- 不要机械地删除所有被标记的异常点,应先检查数据质量
- 考虑异常点的业务含义,有时它们可能包含重要信息
- 可以尝试稳健回归方法替代普通最小二乘法
- 对于高杠杆点,考虑是否需要变换变量或增加样本
通过系统应用这些诊断工具,分析师可以全面评估回归模型的稳健性,确保分析结果可靠可信。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
169
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
374
3.2 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92