macOS 开发环境设置指南
1、项目介绍
mac-setup 是一个开源项目,旨在帮助用户在新 Mac 上快速设置开发环境。该项目由 sb2nov 维护,涵盖了多种编程语言和工具的安装指南,包括 Node.js、Python、C++、Ruby 等。无论你是经验丰富的开发者还是初学者,这个指南都可以作为参考,帮助你快速搭建开发环境。
2、项目快速启动
2.1 克隆项目
首先,你需要将项目克隆到本地:
git clone https://github.com/sb2nov/mac-setup.git
cd mac-setup
2.2 安装 Homebrew
Homebrew 是 macOS 上的包管理器,安装它可以帮助你快速安装其他工具和库。
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
2.3 安装常用工具
使用 Homebrew 安装一些常用的开发工具:
brew install git node python ruby
2.4 配置开发环境
根据你的需求,参考项目中的 README.md 文件,配置相应的开发环境。例如,如果你想配置 Node.js 环境,可以参考 Node.js 部分的指南。
3、应用案例和最佳实践
3.1 案例一:Python 开发环境
假设你需要在 Mac 上进行 Python 开发,可以按照以下步骤进行配置:
-
安装 Python:
brew install python -
安装虚拟环境工具
virtualenv:pip install virtualenv -
创建并激活虚拟环境:
virtualenv venv source venv/bin/activate -
安装所需的 Python 包:
pip install requests flask
3.2 案例二:Node.js 开发环境
如果你需要进行 Node.js 开发,可以按照以下步骤进行配置:
-
安装 Node.js:
brew install node -
创建一个新的 Node.js 项目:
mkdir my-node-project cd my-node-project npm init -y -
安装 Express 框架:
npm install express -
创建一个简单的 Express 应用:
// index.js const express = require('express'); const app = express(); const port = 3000; app.get('/', (req, res) => { res.send('Hello World!'); }); app.listen(port, () => { console.log(`Example app listening at http://localhost:${port}`); }); -
启动应用:
node index.js
4、典型生态项目
4.1 Homebrew
Homebrew 是 macOS 上的包管理器,通过它可以方便地安装和管理各种软件包。它是 mac-setup 项目中推荐使用的工具之一。
4.2 Git
Git 是一个分布式版本控制系统,广泛用于软件开发中。mac-setup 项目中包含了 Git 的安装和配置指南。
4.3 Node.js
Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行时,适用于构建快速、可扩展的网络应用。mac-setup 项目中提供了 Node.js 的安装和配置指南。
4.4 Python
Python 是一种广泛使用的高级编程语言,适用于各种应用场景。mac-setup 项目中包含了 Python 的安装和配置指南。
通过 mac-setup 项目,你可以快速搭建这些生态项目的环境,并开始你的开发工作。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00