WebDataset中特征存储的列式与行式方案对比
2025-06-30 10:15:03作者:冯爽妲Honey
背景介绍
在深度学习训练过程中,特征工程是一个关键环节。许多场景下,特征计算成本高昂,需要避免重复计算。传统做法是将所有特征预先计算后存储,但这种方式存在两个主要问题:一是训练特定模型时可能只需要部分特征,二是新增特征时需要重写整个数据集。
存储方案对比
列式存储方案
列式存储(Column-oriented storage)将不同特征分别存储,其优势在于:
- 灵活性高:可以按需组合不同特征
- 扩展性好:新增特征无需重写已有数据
在WebDataset中实现列式存储的方法:
# 通过合并不同数据集的特征实现列式访问
sample = wids1[index].update(wids2[index])
然而,列式存储在深度学习场景中存在明显缺陷:
- 数据管理复杂:需要确保各列分片对齐
- 性能开销大:每个样本需要多次服务器往返请求
- 存储成本高:可能需要双倍存储硬件
行式存储方案
行式存储(Row-oriented storage)将所有特征打包存储,其优势在于:
- 数据一致性高:所有特征天然对齐
- 访问效率高:单次请求获取全部特征
- 存储效率高:无需冗余存储
WebDataset推荐的行式存储实践:
- 训练前或首轮epoch期间生成完整特征集
- 使用AIStore等工具进行预处理卸载
混合存储策略
对于特征工程中的不同数据类型,可采用混合存储策略:
- 大型二进制特征:存储在分片的tar文件中
- 小型标注数据:使用单一文件存储(LMDB/DBM格式推荐)
# 使用.associate方法关联小型标注 sample = dataset.associate(annotations_db)
性能优化考量
- 分片策略:通过合理分片减少不完美洗牌的影响
- 本地缓存:利用服务器本地NVMe SSD提升访问速度
- 键值设计:
- 索引(index):数据集中的数字位置,会随洗牌变化
- 键(key):tar文件中样本的唯一标识符,不受洗牌影响
特殊场景处理
对于需要切片访问的场景(如只使用样本的部分特征),当前方案存在一定局限性。可能的解决方案包括:
- 预处理阶段提取所需切片
- 探索WebDataset与NVIDIA DALI的集成方案
- 权衡存储效率与访问效率的平衡点
结论
WebDataset支持列式和行式两种存储模式,但从深度学习训练效率角度考虑,推荐采用行式存储为主、混合存储为辅的策略。对于小型标注数据,可采用外部数据库关联的方式;对于大型特征数据,建议预处理生成完整特征集。实际应用中应根据数据规模、特征访问模式和训练需求选择合适的存储方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895