WebDataset中特征存储的列式与行式方案对比
2025-06-30 04:23:34作者:冯爽妲Honey
背景介绍
在深度学习训练过程中,特征工程是一个关键环节。许多场景下,特征计算成本高昂,需要避免重复计算。传统做法是将所有特征预先计算后存储,但这种方式存在两个主要问题:一是训练特定模型时可能只需要部分特征,二是新增特征时需要重写整个数据集。
存储方案对比
列式存储方案
列式存储(Column-oriented storage)将不同特征分别存储,其优势在于:
- 灵活性高:可以按需组合不同特征
- 扩展性好:新增特征无需重写已有数据
在WebDataset中实现列式存储的方法:
# 通过合并不同数据集的特征实现列式访问
sample = wids1[index].update(wids2[index])
然而,列式存储在深度学习场景中存在明显缺陷:
- 数据管理复杂:需要确保各列分片对齐
- 性能开销大:每个样本需要多次服务器往返请求
- 存储成本高:可能需要双倍存储硬件
行式存储方案
行式存储(Row-oriented storage)将所有特征打包存储,其优势在于:
- 数据一致性高:所有特征天然对齐
- 访问效率高:单次请求获取全部特征
- 存储效率高:无需冗余存储
WebDataset推荐的行式存储实践:
- 训练前或首轮epoch期间生成完整特征集
- 使用AIStore等工具进行预处理卸载
混合存储策略
对于特征工程中的不同数据类型,可采用混合存储策略:
- 大型二进制特征:存储在分片的tar文件中
- 小型标注数据:使用单一文件存储(LMDB/DBM格式推荐)
# 使用.associate方法关联小型标注 sample = dataset.associate(annotations_db)
性能优化考量
- 分片策略:通过合理分片减少不完美洗牌的影响
- 本地缓存:利用服务器本地NVMe SSD提升访问速度
- 键值设计:
- 索引(index):数据集中的数字位置,会随洗牌变化
- 键(key):tar文件中样本的唯一标识符,不受洗牌影响
特殊场景处理
对于需要切片访问的场景(如只使用样本的部分特征),当前方案存在一定局限性。可能的解决方案包括:
- 预处理阶段提取所需切片
- 探索WebDataset与NVIDIA DALI的集成方案
- 权衡存储效率与访问效率的平衡点
结论
WebDataset支持列式和行式两种存储模式,但从深度学习训练效率角度考虑,推荐采用行式存储为主、混合存储为辅的策略。对于小型标注数据,可采用外部数据库关联的方式;对于大型特征数据,建议预处理生成完整特征集。实际应用中应根据数据规模、特征访问模式和训练需求选择合适的存储方案。
登录后查看全文
热门项目推荐
相关项目推荐
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0277community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
508
44

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
194
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
940
554

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
339
11

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70