WebDataset中特征存储的列式与行式方案对比
2025-06-30 19:45:16作者:冯爽妲Honey
背景介绍
在深度学习训练过程中,特征工程是一个关键环节。许多场景下,特征计算成本高昂,需要避免重复计算。传统做法是将所有特征预先计算后存储,但这种方式存在两个主要问题:一是训练特定模型时可能只需要部分特征,二是新增特征时需要重写整个数据集。
存储方案对比
列式存储方案
列式存储(Column-oriented storage)将不同特征分别存储,其优势在于:
- 灵活性高:可以按需组合不同特征
- 扩展性好:新增特征无需重写已有数据
在WebDataset中实现列式存储的方法:
# 通过合并不同数据集的特征实现列式访问
sample = wids1[index].update(wids2[index])
然而,列式存储在深度学习场景中存在明显缺陷:
- 数据管理复杂:需要确保各列分片对齐
- 性能开销大:每个样本需要多次服务器往返请求
- 存储成本高:可能需要双倍存储硬件
行式存储方案
行式存储(Row-oriented storage)将所有特征打包存储,其优势在于:
- 数据一致性高:所有特征天然对齐
- 访问效率高:单次请求获取全部特征
- 存储效率高:无需冗余存储
WebDataset推荐的行式存储实践:
- 训练前或首轮epoch期间生成完整特征集
- 使用AIStore等工具进行预处理卸载
混合存储策略
对于特征工程中的不同数据类型,可采用混合存储策略:
- 大型二进制特征:存储在分片的tar文件中
- 小型标注数据:使用单一文件存储(LMDB/DBM格式推荐)
# 使用.associate方法关联小型标注 sample = dataset.associate(annotations_db)
性能优化考量
- 分片策略:通过合理分片减少不完美洗牌的影响
- 本地缓存:利用服务器本地NVMe SSD提升访问速度
- 键值设计:
- 索引(index):数据集中的数字位置,会随洗牌变化
- 键(key):tar文件中样本的唯一标识符,不受洗牌影响
特殊场景处理
对于需要切片访问的场景(如只使用样本的部分特征),当前方案存在一定局限性。可能的解决方案包括:
- 预处理阶段提取所需切片
- 探索WebDataset与NVIDIA DALI的集成方案
- 权衡存储效率与访问效率的平衡点
结论
WebDataset支持列式和行式两种存储模式,但从深度学习训练效率角度考虑,推荐采用行式存储为主、混合存储为辅的策略。对于小型标注数据,可采用外部数据库关联的方式;对于大型特征数据,建议预处理生成完整特征集。实际应用中应根据数据规模、特征访问模式和训练需求选择合适的存储方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C041
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869