ArcticDB项目中数值过滤测试不稳定的技术分析
2025-07-07 17:39:39作者:沈韬淼Beryl
问题背景
在ArcticDB项目(一个高性能的Python数据存储库)的测试过程中,发现test_filter_numeric_isnotin_signed测试用例存在不稳定的情况。该测试主要验证数值类型数据在动态模式下的"NOT IN"过滤功能。
问题现象
测试失败时显示,当数据框中包含一个接近JavaScript最大安全整数(2^53)的数值9.007199e+15(即9007199254740993)时,ArcticDB的过滤结果与Pandas的过滤结果不一致。具体表现为:
- 原始数据框包含单行数据:a列值为9.007199e+15,b列值为0.0
- 执行"a not in [9007199254740993]"过滤条件
- 预期结果应为空数据框(因为该值确实在过滤列表中)
- 但实际测试中,ArcticDB的过滤结果与预期不符
技术分析
浮点数精度问题
该问题很可能与浮点数精度处理有关。9007199254740993是一个特殊的数值,它正好是2^53 + 1,处于JavaScript和许多系统处理大整数的精度边界。当这个值以浮点数形式存储时,可能会发生精度损失。
动态模式处理差异
ArcticDB在处理动态模式数据时,可能有以下潜在问题:
- 数值类型推断不一致:在写入和读取时对数值类型的处理可能有差异
- 过滤条件转换问题:将Python的"NOT IN"操作转换为底层存储查询时可能存在精度损失
- 边界值处理不足:对接近最大安全整数的数值处理不够健壮
测试设计考量
该测试用例的设计值得商榷:
- 使用了边界值作为测试数据,这本身是好的实践
- 但可能没有考虑到不同平台(如MacOS和Linux)上浮点数处理的细微差异
- 动态模式下的类型推断可能在不同环境下表现不一致
解决方案建议
- 明确数值类型:在测试中明确指定数值类型,避免自动类型推断带来的不确定性
- 增加容错机制:在数值比较时增加适当的容错范围,特别是对浮点数的相等性判断
- 边界值测试增强:专门针对大整数边界值设计更全面的测试用例
- 日志增强:在测试失败时输出更详细的数据类型和值信息,便于诊断
总结
这个问题揭示了在数据处理系统中处理大整数和浮点数精度时的常见挑战。ArcticDB作为一个高性能数据存储库,需要特别注意数值精度的一致性,特别是在跨平台和动态模式场景下。通过改进测试设计和增强核心处理逻辑,可以提升系统的稳定性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218