NuScenes数据集中的相机内外参数解析
2025-07-01 15:22:03作者:俞予舒Fleming
概述
NuScenes数据集作为自动驾驶领域的重要基准数据集,提供了丰富的传感器数据。其中,相机的内外参数对于计算机视觉任务至关重要,直接影响着图像数据的理解和处理。本文将详细介绍NuScenes数据集中相机内外参数的结构、获取方式以及实际应用中的注意事项。
相机内参数
相机内参数(Intrinsic Parameters)描述了相机自身的成像特性,主要包括焦距、主点坐标等。在NuScenes数据集中,内参数以3×3矩阵形式存储在camera_intrinsic字段中:
"camera_intrinsic": [
[1266.417203046554, 0.0, 816.2670197447984],
[0.0, 1266.417203046554, 491.50706579294757],
[0.0, 0.0, 1.0]
]
这个矩阵遵循标准的相机内参矩阵形式:
[fx, 0, cx]
[0, fy, cy]
[0, 0, 1]
其中:
fx和fy分别表示x和y方向的焦距(以像素为单位)cx和cy表示主点坐标(图像中心点)- 对角线上的0表示没有倾斜畸变
相机外参数
相机外参数(Extrinsic Parameters)描述了相机在车辆坐标系中的位置和朝向,包括旋转和平移两部分:
"translation": [1.70079118954, 0.0159456324149, 1.51095763913],
"rotation": [0.4998015430569128, -0.5030316162024876, 0.4997798114386805, -0.49737083824542755]
其中:
translation表示相机相对于车辆中心的三维位置偏移(单位:米)rotation采用四元数表示相机的旋转姿态
参数获取方法
在NuScenes数据集中,可以通过以下步骤获取特定场景和样本的相机参数:
- 首先加载数据集并获取场景信息
- 通过场景获取样本数据
- 从样本数据中获取特定相机传感器的数据
- 最后获取校准传感器信息,其中包含内外参数
示例代码:
from nuscenes.nuscenes import NuScenes
nusc = NuScenes(version='v1.0-mini', dataroot='/data/sets/nuscenes', verbose=False)
scene = nusc.scene[0]
sample = nusc.get("sample", scene["first_sample_token"])
sample_data = nusc.get("sample_data", sample["data"]["CAM_FRONT"])
calibrated_sensor = nusc.get("calibrated_sensor", sample_data["calibrated_sensor_token"])
实际应用注意事项
-
坐标系转换:NuScenes使用右手坐标系,x轴向前,y轴向左,z轴向上。在使用外参数时需要注意坐标系的定义。
-
时间同步:不同传感器的数据可能有微小差异,在需要精确对齐时需要考虑时间戳。
-
参数一致性:同一相机的内外参数在不同场景中保持一致,但不同车辆可能有微小差异。
-
畸变参数:NuScenes数据集中的图像已经过畸变校正,因此内参矩阵中不包含畸变参数。
-
多传感器融合:当需要将相机数据与其他传感器(如激光雷达)数据对齐时,需要结合各自的外参数进行计算。
总结
NuScenes数据集提供了完整的相机内外参数信息,使得研究人员可以直接使用这些数据进行各种计算机视觉和自动驾驶相关的研究。理解这些参数的含义和获取方式,对于正确使用数据集、开发感知算法至关重要。在实际应用中,建议仔细检查参数的单位和坐标系定义,确保数据的正确使用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30