NuScenes数据集中的相机内外参数解析
2025-07-01 02:19:57作者:俞予舒Fleming
概述
NuScenes数据集作为自动驾驶领域的重要基准数据集,提供了丰富的传感器数据。其中,相机的内外参数对于计算机视觉任务至关重要,直接影响着图像数据的理解和处理。本文将详细介绍NuScenes数据集中相机内外参数的结构、获取方式以及实际应用中的注意事项。
相机内参数
相机内参数(Intrinsic Parameters)描述了相机自身的成像特性,主要包括焦距、主点坐标等。在NuScenes数据集中,内参数以3×3矩阵形式存储在camera_intrinsic字段中:
"camera_intrinsic": [
[1266.417203046554, 0.0, 816.2670197447984],
[0.0, 1266.417203046554, 491.50706579294757],
[0.0, 0.0, 1.0]
]
这个矩阵遵循标准的相机内参矩阵形式:
[fx, 0, cx]
[0, fy, cy]
[0, 0, 1]
其中:
fx和fy分别表示x和y方向的焦距(以像素为单位)cx和cy表示主点坐标(图像中心点)- 对角线上的0表示没有倾斜畸变
相机外参数
相机外参数(Extrinsic Parameters)描述了相机在车辆坐标系中的位置和朝向,包括旋转和平移两部分:
"translation": [1.70079118954, 0.0159456324149, 1.51095763913],
"rotation": [0.4998015430569128, -0.5030316162024876, 0.4997798114386805, -0.49737083824542755]
其中:
translation表示相机相对于车辆中心的三维位置偏移(单位:米)rotation采用四元数表示相机的旋转姿态
参数获取方法
在NuScenes数据集中,可以通过以下步骤获取特定场景和样本的相机参数:
- 首先加载数据集并获取场景信息
- 通过场景获取样本数据
- 从样本数据中获取特定相机传感器的数据
- 最后获取校准传感器信息,其中包含内外参数
示例代码:
from nuscenes.nuscenes import NuScenes
nusc = NuScenes(version='v1.0-mini', dataroot='/data/sets/nuscenes', verbose=False)
scene = nusc.scene[0]
sample = nusc.get("sample", scene["first_sample_token"])
sample_data = nusc.get("sample_data", sample["data"]["CAM_FRONT"])
calibrated_sensor = nusc.get("calibrated_sensor", sample_data["calibrated_sensor_token"])
实际应用注意事项
-
坐标系转换:NuScenes使用右手坐标系,x轴向前,y轴向左,z轴向上。在使用外参数时需要注意坐标系的定义。
-
时间同步:不同传感器的数据可能有微小差异,在需要精确对齐时需要考虑时间戳。
-
参数一致性:同一相机的内外参数在不同场景中保持一致,但不同车辆可能有微小差异。
-
畸变参数:NuScenes数据集中的图像已经过畸变校正,因此内参矩阵中不包含畸变参数。
-
多传感器融合:当需要将相机数据与其他传感器(如激光雷达)数据对齐时,需要结合各自的外参数进行计算。
总结
NuScenes数据集提供了完整的相机内外参数信息,使得研究人员可以直接使用这些数据进行各种计算机视觉和自动驾驶相关的研究。理解这些参数的含义和获取方式,对于正确使用数据集、开发感知算法至关重要。在实际应用中,建议仔细检查参数的单位和坐标系定义,确保数据的正确使用。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
144
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
73
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K