Kubeflow Kserve中Knative自动扩缩容配置的最佳实践
2025-06-15 13:55:04作者:韦蓉瑛
Kubeflow Kserve作为机器学习模型服务框架,底层依赖Knative Serving来实现自动扩缩容能力。然而在实际使用中,Kserve对Knative自动扩缩容配置的处理存在一些值得注意的问题和优化空间。本文将深入分析这些技术细节,并给出相应的解决方案。
问题背景分析
Kserve在创建Knative服务时,没有充分考虑Knative全局自动扩缩容配置,这可能导致以下两类问题:
初始副本数配置问题
Knative有一个全局配置参数initial-scale,用于指定新创建的Knative Revision初始副本数。当这个值与用户通过Kserve指定的min/max副本数范围不匹配时,会出现两种典型场景:
- 当全局
initial-scale值大于用户设置的max副本数时,Knative会创建超过用户期望最大值的副本数 - 当全局
initial-scale值大于用户设置的min副本数(但小于max)时,Knative会选择较大的值作为初始副本数。特别是当用户设置min=0时,默认initial-scale=1会导致总是启动1个副本
最大副本数配置问题
Kserve当前仅在用户设置非零max副本数时才会添加max-scale注解,这导致:
- 对于Inference Graph,Kserve从不添加
max-scale注解,总是回退使用Knative全局配置 - 当用户设置max=0(表示无限扩展)时,由于缺少注解,Knative会使用全局
max-scale值,无法实现真正的无限扩展
解决方案设计
针对上述问题,我们提出以下解决方案:
初始副本数处理优化
- 智能初始副本数设置:在创建Knative服务时,读取Knative全局配置中的
initial-scale值。如果用户设置的max副本数大于0且小于全局initial-scale,则将initial-scale注解设置为max副本数值 - 默认行为优化:默认将
initial-scale设置为用户指定的min副本数,同时允许用户通过注解覆盖此默认值 - 边界情况处理:当用户请求0初始副本数但Knative配置不允许时,自动设置为1
最大副本数处理优化
- 统一注解添加:无论用户设置何种max副本数值,都始终添加
max-scale注解 - 无限扩展支持:当用户设置max=0时,确保
max-scale=0注解被正确添加,以实现真正的无限扩展能力
实现建议
在实际实现中,建议采用以下策略:
- 在Kserve控制器中添加Knative配置读取逻辑,获取当前集群的自动扩缩容全局设置
- 在创建Knative服务前,根据用户配置和全局设置计算最优的初始副本数
- 确保所有自动扩缩容相关注解都被正确设置,避免依赖Knative的默认行为
- 添加适当的日志输出,帮助用户理解最终的扩缩容配置是如何确定的
总结
正确处理Knative自动扩缩容配置对于保证Kserve服务的稳定性和资源利用率至关重要。通过本文提出的优化方案,可以确保Kserve服务的行为更加符合用户预期,同时保持与Knative的良好集成。这些改进将使Kserve在自动扩缩容方面提供更加一致和可预测的行为,特别是在边缘场景下表现更加稳健。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328