推荐:ASpanFormer - 改变图像匹配游戏规则的新范式
2024-05-31 09:22:10作者:温艾琴Wonderful
项目介绍
ASpanFormer 是一个基于 PyTorch 的创新实现,它源于 ECCV '22 论文《ASpanFormer: Detector-Free Image Matching with Adaptive Span Transformer》。这个开源项目专注于无检测器的图像匹配,通过提出一种自适应跨度变换的层次注意力框架,实现跨视图特征更新,根据区域匹配性动态调整注意力范围。
该项目不仅包含了训练、评估和基本的演示脚本,还部分借用了 LoFTR 代码库,为研究者和开发者提供了一个强大的工具,用于在实际场景中探索和应用自适应跨度变换技术。
项目技术分析
ASpanFormer 的核心是其自适应跨度变换(Adaptive Span Transformer),它摒弃了传统的检测器依赖,转而采用层次化注意力机制来捕获图像间的对应关系。这一方法的特点在于,它可以智能地根据区域的匹配度调整注意力的范围,从而提高匹配的准确性与效率。
通过将这一新颖的架构融入到图像匹配过程中,ASpanFormer 能够在无需复杂的预处理步骤的情况下,有效地捕捉不同场景下的视觉一致性,使得即使在复杂环境中的图像配对也变得更为精准。
项目及技术应用场景
ASpanFormer 的应用广泛,尤其适用于以下几个领域:
- 室内场景重建:例如使用 ScanNet 数据集,可用于高精度室内环境的三维重建。
- 户外场景匹配:如利用 MegaDepth 数据集,可以解决室外场景的深度估计和匹配问题。
- 自动驾驶:实时的图像匹配对于车辆定位和避障至关重要。
- 无人机导航:帮助无人机识别并跟踪目标,进行自主导航。
- 虚拟现实和增强现实:优化用户体验,实现无缝的虚拟和真实世界融合。
项目特点
- 无检测器设计:ASpanFormer 突破传统,不依赖于对象检测器,简化了图像匹配流程。
- 自适应跨度变换:依据区域的匹配性动态调整注意力范围,提高了匹配精度。
- 高效性能:尽管引入了层次化注意力,但模型仍保持了较高的运行效率。
- 易于复现:提供了详尽的训练和评估脚本,方便研究者验证和扩展结果。
- 开放源代码:完全开源,社区支持,鼓励贡献和合作。
如果你正寻找一种新的、高效的图像匹配解决方案,或者对深度学习中的注意力机制有深入研究的兴趣,那么 ASpanFormer 绝对值得你一试。现在就加入,开启你的图像匹配之旅吧!
[此处插入项目的GitHub链接]
引用论文:
@article{chen2022aspanformer,
title={ASpanFormer: Detector-Free Image Matching with Adaptive Span Transformer},
author={陈洪凯, 罗子新, 周雷, 天润, 镇铭敏, 方天, 麦肯尼, 龙, 吕东洋},
journal={欧洲计算机视觉会议 (ECCV)},
year={2022}
}
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134