Apache Superset中Redis缓存键不一致问题的分析与解决
2025-04-29 13:54:50作者:殷蕙予
问题背景
在使用Apache Superset 4.1.1版本时,用户遇到了一个关于Redis缓存键不一致的问题。具体表现为:当通过Web界面访问时生成的Redis键与通过Celery任务生成的键不同,导致缓存预热任务无法正确更新仪表板数据。
技术细节分析
缓存配置差异
在Superset中,缓存系统主要通过两个配置部分实现:
- Web界面缓存:通过
CACHE_CONFIG和DATA_CACHE_CONFIG配置,使用Redis作为后端存储 - Celery任务结果缓存:通过
RESULTS_BACKEND配置,同样使用Redis存储任务结果
问题根源在于这两部分配置虽然都指向同一个Redis实例,但生成的键前缀不同,导致系统无法正确识别和重用缓存。
键生成机制
Superset使用以下方式生成缓存键:
- Web界面请求会生成类似
superset_e23a1c62312312a397c45c3d33e528a2的键 - Celery任务会生成类似
superset_b0785f6387364685c0fc67b2c738a54e的键
这种差异使得即使查询相同的数据,也会因为键不同而无法共享缓存。
解决方案
统一键前缀配置
确保所有缓存配置使用相同的键前缀:
# Web缓存配置
CACHE_CONFIG = {
"CACHE_TYPE": "RedisCache",
"CACHE_DEFAULT_TIMEOUT": 3600,
"CACHE_KEY_PREFIX": "superset_ui_", # 明确区分但保持一致性
"CACHE_REDIS_URL": CACHE_REDIS_URL,
}
# Celery结果后端配置
RESULTS_BACKEND = RedisCache(
host=REDIS_HOST,
username=REDIS_USERNAME,
password=REDIS_PASSWORD,
port=6379,
key_prefix='superset_ui_', # 与Web缓存保持一致
)
缓存策略调整
- 明确缓存用途:区分UI缓存和任务结果缓存,使用不同的前缀但保持一致性
- 缓存生命周期管理:设置合理的过期时间,避免缓存堆积
- 预热策略优化:确保预热任务生成的键与UI访问生成的键一致
实施建议
- 检查所有缓存相关配置,确保键前缀的一致性
- 在开发环境进行充分测试,验证缓存共享是否正常
- 监控生产环境中的缓存命中率,持续优化配置
总结
Redis缓存键不一致是分布式系统中常见的问题。在Superset这类数据可视化平台中,确保Web界面和后台任务使用一致的缓存键至关重要。通过统一配置和合理的缓存策略,可以有效解决这类问题,提升系统性能和用户体验。
对于更复杂的场景,建议考虑实现自定义的缓存键生成逻辑,确保不同组件生成的键能够正确对应相同的数据集。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210