FastApi-RESTful 项目中的枚举类型最佳实践
2025-07-04 03:34:26作者:霍妲思
为什么要在 API 中使用枚举类型
在构建 RESTful API 时,枚举类型是一种非常有用的工具,它能够:
- 限制输入值的范围,确保客户端只能传递预定义的有效值
- 自动生成清晰的文档,使 API 使用者一目了然地知道可用的选项
- 提高代码的可读性和可维护性,使用有意义的名称代替魔术字符串或数字
字符串枚举 vs 整数枚举
在 API 设计中,我们通常面临选择使用字符串枚举还是整数枚举的决策:
- 整数枚举:占用空间小,传输效率高,但调试困难,可读性差
- 字符串枚举:占用空间稍大,但可读性强,调试方便,文档清晰
对于大多数应用场景,字符串枚举的开发优势远远超过了其微小的性能/带宽开销。
在 FastAPI 中实现字符串枚举
在 Python 中创建适用于 FastAPI 的字符串枚举非常简单:
from enum import Enum
class Status(str, Enum):
PENDING = "PENDING"
PROCESSING = "PROCESSING"
COMPLETED = "COMPLETED"
这种实现方式:
- 继承
str确保枚举值会被序列化为字符串 - 继承
Enum提供枚举功能 - 会被 FastAPI 正确识别并生成 OpenAPI 文档
避免常见的枚举陷阱
在实际开发中,我们可能会遇到以下问题:
问题场景:重构枚举名称时忘记更新对应的值
class Status(str, Enum):
WAITING = "PENDING" # 名称和值不一致
IN_PROGRESS = "PROCESSING"
DONE = "COMPLETED"
这会导致客户端必须使用旧值("PENDING")而不是新名称("WAITING")才能通过验证。
使用自动值生成
Python 标准库提供了 auto() 来自动生成枚举值。默认情况下它生成整数,但我们可以自定义行为:
from enum import Enum, auto
class AutoName(str, Enum):
def _generate_next_value_(name, start, count, last_values):
return name.lower()
class Status(AutoName):
WAITING = auto() # 值自动设为 "waiting"
IN_PROGRESS = auto() # 值自动设为 "in_progress"
DONE = auto() # 值自动设为 "done"
FastApi-RESTful 提供的便利枚举类
为了简化开发,FastApi-RESTful 提供了两个实用的枚举基类:
1. StrEnum
from fastapi_restful.enums import StrEnum
class Status(StrEnum):
WAITING = auto() # 值自动设为 "WAITING"
IN_PROGRESS = auto() # 值自动设为 "IN_PROGRESS"
DONE = auto() # 值自动设为 "DONE"
2. CamelStrEnum
from fastapi_restful.enums import CamelStrEnum
class Status(CamelStrEnum):
WAITING = auto() # 值自动设为 "waiting"
IN_PROGRESS = auto() # 值自动设为 "inProgress"
DONE = auto() # 值自动设为 "done"
实际应用示例
假设我们正在开发一个任务管理系统,可以这样定义状态枚举:
from fastapi_restful.enums import CamelStrEnum
from pydantic import BaseModel
class TaskStatus(CamelStrEnum):
NEW = auto()
IN_PROGRESS = auto()
ON_HOLD = auto()
COMPLETED = auto()
CANCELLED = auto()
class Task(BaseModel):
id: int
title: str
status: TaskStatus
这样定义的 API 将:
- 自动验证输入状态是否为预定义值
- 在文档中清晰显示所有可用状态
- 使用驼峰命名法(camelCase)的字符串值,符合常见的前端命名习惯
总结
在 FastApi-RESTful 项目中使用枚举类型可以显著提升 API 的质量和开发体验。通过利用项目提供的 StrEnum 和 CamelStrEnum,开发者可以:
- 减少样板代码
- 避免常见的枚举陷阱
- 保持一致的命名风格
- 生成更友好的 API 文档
对于大多数 Web API 开发场景,字符串枚举是最佳选择,而 FastApi-RESTful 提供的工具让这一选择更加简单和高效。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1