FastApi-RESTful 项目中的枚举类型最佳实践
2025-07-04 13:24:41作者:霍妲思
为什么要在 API 中使用枚举类型
在构建 RESTful API 时,枚举类型是一种非常有用的工具,它能够:
- 限制输入值的范围,确保客户端只能传递预定义的有效值
- 自动生成清晰的文档,使 API 使用者一目了然地知道可用的选项
- 提高代码的可读性和可维护性,使用有意义的名称代替魔术字符串或数字
字符串枚举 vs 整数枚举
在 API 设计中,我们通常面临选择使用字符串枚举还是整数枚举的决策:
- 整数枚举:占用空间小,传输效率高,但调试困难,可读性差
- 字符串枚举:占用空间稍大,但可读性强,调试方便,文档清晰
对于大多数应用场景,字符串枚举的开发优势远远超过了其微小的性能/带宽开销。
在 FastAPI 中实现字符串枚举
在 Python 中创建适用于 FastAPI 的字符串枚举非常简单:
from enum import Enum
class Status(str, Enum):
PENDING = "PENDING"
PROCESSING = "PROCESSING"
COMPLETED = "COMPLETED"
这种实现方式:
- 继承
str确保枚举值会被序列化为字符串 - 继承
Enum提供枚举功能 - 会被 FastAPI 正确识别并生成 OpenAPI 文档
避免常见的枚举陷阱
在实际开发中,我们可能会遇到以下问题:
问题场景:重构枚举名称时忘记更新对应的值
class Status(str, Enum):
WAITING = "PENDING" # 名称和值不一致
IN_PROGRESS = "PROCESSING"
DONE = "COMPLETED"
这会导致客户端必须使用旧值("PENDING")而不是新名称("WAITING")才能通过验证。
使用自动值生成
Python 标准库提供了 auto() 来自动生成枚举值。默认情况下它生成整数,但我们可以自定义行为:
from enum import Enum, auto
class AutoName(str, Enum):
def _generate_next_value_(name, start, count, last_values):
return name.lower()
class Status(AutoName):
WAITING = auto() # 值自动设为 "waiting"
IN_PROGRESS = auto() # 值自动设为 "in_progress"
DONE = auto() # 值自动设为 "done"
FastApi-RESTful 提供的便利枚举类
为了简化开发,FastApi-RESTful 提供了两个实用的枚举基类:
1. StrEnum
from fastapi_restful.enums import StrEnum
class Status(StrEnum):
WAITING = auto() # 值自动设为 "WAITING"
IN_PROGRESS = auto() # 值自动设为 "IN_PROGRESS"
DONE = auto() # 值自动设为 "DONE"
2. CamelStrEnum
from fastapi_restful.enums import CamelStrEnum
class Status(CamelStrEnum):
WAITING = auto() # 值自动设为 "waiting"
IN_PROGRESS = auto() # 值自动设为 "inProgress"
DONE = auto() # 值自动设为 "done"
实际应用示例
假设我们正在开发一个任务管理系统,可以这样定义状态枚举:
from fastapi_restful.enums import CamelStrEnum
from pydantic import BaseModel
class TaskStatus(CamelStrEnum):
NEW = auto()
IN_PROGRESS = auto()
ON_HOLD = auto()
COMPLETED = auto()
CANCELLED = auto()
class Task(BaseModel):
id: int
title: str
status: TaskStatus
这样定义的 API 将:
- 自动验证输入状态是否为预定义值
- 在文档中清晰显示所有可用状态
- 使用驼峰命名法(camelCase)的字符串值,符合常见的前端命名习惯
总结
在 FastApi-RESTful 项目中使用枚举类型可以显著提升 API 的质量和开发体验。通过利用项目提供的 StrEnum 和 CamelStrEnum,开发者可以:
- 减少样板代码
- 避免常见的枚举陷阱
- 保持一致的命名风格
- 生成更友好的 API 文档
对于大多数 Web API 开发场景,字符串枚举是最佳选择,而 FastApi-RESTful 提供的工具让这一选择更加简单和高效。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
614
138
Ascend Extension for PyTorch
Python
163
183
React Native鸿蒙化仓库
JavaScript
240
314
仓颉编译器源码及 cjdb 调试工具。
C++
126
854
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
369
3.15 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
255
90
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
644
255