BentoML v1.4.8 版本发布:增强镜像配置与安全改进
BentoML 是一个开源的机器学习模型服务框架,它能够帮助开发者将训练好的模型快速打包成可部署的服务。BentoML 提供了从模型管理到服务部署的全套工具链,支持多种机器学习框架,并能够将模型部署到各种云平台或本地环境。
近日,BentoML 发布了 v1.4.8 版本,这个版本主要带来了镜像配置的增强功能和一些安全方面的改进。下面我们来详细看看这个版本的主要更新内容。
镜像配置增强
在 v1.4.8 版本中,BentoML 改进了镜像配置的功能。现在开发者可以通过 bentofile.yaml 文件来覆盖 Image 的默认值。这个改进使得镜像配置更加灵活,开发者可以根据不同的部署环境定制镜像参数,而不需要修改代码。
这个功能特别适合在多环境部署的场景下使用。例如,开发环境和生产环境可能需要不同的资源限制或基础镜像,现在可以通过配置文件轻松实现这些差异化的配置。
Bento 参数实现
新版本还实现了 Bento 参数的功能。Bento 是 BentoML 中的一个核心概念,代表一个打包好的模型服务。通过这个功能,开发者可以在创建 Bento 时传递参数,这些参数可以在服务运行时被读取和使用。
这个功能为模型服务提供了更大的灵活性,使得同一个 Bento 可以根据不同的参数表现出不同的行为,而不需要重新打包。
安全改进
在安全方面,v1.4.8 版本做了以下改进:
- 更新了安全咨询的联系方式,确保安全问题能够及时得到响应和处理。
- 移除了 CLI 中的一些启动命令,减少了潜在的安全风险。
- 更新了安全说明文档,提供了更清晰的安全指南。
这些改进体现了 BentoML 团队对安全性的重视,为开发者提供了更安全的模型服务环境。
其他改进
除了上述主要功能外,v1.4.8 版本还包含了一些小的改进和修复:
- 修复了 requirements 文件没有行尾的问题,确保依赖文件能够被正确解析。
- 锁定了 transformers 的版本,确保快速入门测试的稳定性。
总结
BentoML v1.4.8 版本虽然在功能上没有大的突破,但在细节上做了很多优化,特别是在镜像配置和安全方面。这些改进使得 BentoML 更加稳定和安全,为开发者提供了更好的使用体验。
对于正在使用 BentoML 的开发者来说,这个版本值得升级,特别是那些需要多环境部署或对安全性有较高要求的项目。新版本的镜像配置增强和安全改进将为这些场景提供更好的支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C068
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00