tus-js-client 中实现上传完成回调的最佳实践
2025-07-02 06:29:19作者:袁立春Spencer
在基于浏览器的文件上传场景中,tus-js-client 作为实现 TUS 断点续传协议的核心库,其异步上传特性常常需要开发者处理上传完成后的回调逻辑。本文将深入探讨如何优雅地封装上传过程,实现上传完成后的响应处理。
核心问题分析
原生 tus.Upload 实例采用事件驱动模式,通过 onSuccess 和 onError 回调处理上传结果。这种模式在现代前端开发中(特别是 React/Vue 等框架)往往需要转换为更符合开发者习惯的 Promise 模式,以便于在 async/await 语法中使用。
解决方案实现
通过 Promise 封装是最符合工程实践的解决方案:
const tusUpload = (file: File) => {
return new Promise((resolve, reject) => {
const upload = new tus.Upload(file, {
endpoint: 'YOUR_TUS_ENDPOINT',
retryDelays: null,
onError: (error) => {
reject(error);
},
onSuccess: () => {
try {
const response = JSON.parse(upload.lastResponse.getBody());
resolve(response);
} catch (e) {
reject(new Error('Failed to parse response'));
}
}
});
upload.start();
});
};
关键实现要点
- 错误处理强化:除了网络错误,还应该处理响应解析错误
- 响应解析:TUS 协议响应通常是 JSON 格式,需要显式解析
- 类型安全:在 TypeScript 中建议定义明确的返回类型
- 取消支持:可扩展实现上传取消功能
实际应用示例
在 React 组件中的典型用法:
const handleUpload = async (file) => {
try {
setUploadStatus('uploading');
const result = await tusUpload(file);
await createProject({ video_id: result.id });
setUploadStatus('success');
} catch (error) {
setUploadStatus('error');
showErrorToast(error.message);
}
};
进阶优化建议
- 进度监控:可结合 onProgress 回调实现上传进度显示
- 并发控制:对于批量上传场景需要实现队列管理
- 重试策略:根据业务需求定制 retryDelays 参数
- 内存管理:大文件上传时注意内存释放
总结
通过 Promise 封装 tus-js-client 的上传过程,不仅使代码更符合现代前端开发范式,还能更好地与状态管理、错误处理等系统集成。这种模式特别适合需要在上传完成后执行后续业务逻辑的场景,如创建关联记录、更新UI状态等。开发者可以根据实际需求扩展基础实现,构建更健壮的上传解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193