UKB-RAP-Notebooks项目:基于OMOP数据模型的高血压病例研究
2025-06-28 19:40:32作者:舒璇辛Bertina
概述
本文将介绍如何使用UKB-RAP-Notebooks项目中的Jupyter Notebook分析OMOP(Observational Medical Outcomes Partnership)数据模型中的高血压相关数据。OMOP是由OHDSI(Observational Health Data Science and Informatics)社区开发的标准医疗数据模型,旨在规范观察性数据的结构和内容,支持高效的医疗数据分析。
技术背景
OMOP数据模型简介
OMOP通用数据模型(CDM)提供了一种标准化的方式来组织和表示医疗数据,主要包括以下几类表:
- 临床数据表:如condition_occurrence(疾病发生)、drug_exposure(药物暴露)等
- 资源表:如concept(概念)、concept_ancestor(概念层级)等
- 元数据表:如metadata(元数据)
Spark技术优势
本分析使用Spark处理大规模OMOP数据,主要优势包括:
- 内存计算:数据加载到内存后大幅提升后续分析速度
- 分布式处理:能够高效处理海量医疗数据
- 统一接口:通过sparklyr包提供熟悉的R/dplyr接口
分析流程
1. 环境准备
首先需要加载必要的R包:
if(!require(pacman)) install.packages("pacman")
install.packages("sparklyr")
pacman::p_load(sparklyr, data.table, dplyr, ggplot2, scales, stringr, glue, readr)
2. 加载OMOP资源表
OMOP资源表不包含参与者特定信息,但提供标准化关键词等数据:
# 下载并加载概念表和概念层级表
system("wget -nd biobank.ndph.ox.ac.uk/ukb/ukb/auxdata/omop_concept.tsv")
system("wget -nd biobank.ndph.ox.ac.uk/ukb/ukb/auxdata/omop_concept_ancestor.tsv")
# 处理概念表
omop_concept <- fread("omop_concept.tsv", sep = "\t")
omop_concept_ancestor <- fread("omop_concept_ancestor.tsv", sep = "\t") %>%
left_join(select(omop_concept, concept_id, "ancestor_concept_name" = concept_name),
by = c("ancestor_concept_id" = "concept_id")) %>%
left_join(select(omop_concept, concept_id, "descendant_concept_name" = concept_name),
by = c("descendant_concept_id" = "concept_id"))
3. 识别高血压相关概念
通过概念层级关系识别高血压相关概念:
# 识别高血压疾病(concept_id=316866)的所有子概念
hypertension_concept_ids <- omop_concept_ancestor %>%
filter(ancestor_concept_id == "316866") %>%
distinct(descendant_concept_id, ancestor_concept_name, descendant_concept_name) %>%
mutate(descendant_concept_id = as.character(descendant_concept_id))
4. 建立Spark连接并加载数据
# 建立Spark连接
port <- Sys.getenv("SPARK_MASTER_PORT")
master <- paste("spark://master:", port, sep = '')
sc = spark_connect(master)
# 加载条件发生表
tbl_cache(sc, paste0(database, '.omop_condition_occurrence'))
omop_condition_occurrence <- dplyr::tbl(sc, paste0(database, '.omop_condition_occurrence'))
5. 数据过滤与分析
5.1 过滤高血压相关记录
# 转换为Spark数据框
hypertension_concept_ids_spark <- sparklyr::copy_to(sc, hypertension_concept_ids, overwrite = TRUE)
# 过滤条件发生表
omop_condition_occurrence_filtered <- omop_condition_occurrence %>%
inner_join(hypertension_concept_ids_spark,
by = c("condition_concept_id" = "descendant_concept_id")) %>%
select(eid, condition_occurrence_id, condition_concept_id, descendant_concept_name)
5.2 分析概念层级的影响
使用概念层级关系可以捕获更全面的高血压相关数据:
- 仅包含"原发性高血压"的记录:141,054条
- 包含所有高血压相关子概念的记录:171,211条
- 额外捕获的记录:30,157条
# 分析不同概念组合
omop_condition_occurrence_filtered %>%
distinct(eid, condition_concept_id, descendant_concept_name) %>%
mutate(
condition = case_when(
descendant_concept_name == "Essential hypertension" ~ "Essential hypertension",
TRUE ~ "Other Hypertensive disorders"
)
) %>%
count(condition, wt = n)
5.3 参与者分组分析
参与者可分为三组:
- 仅原发性高血压:111,874人
- 原发性高血压和其他高血压疾病:29,180人
- 仅其他高血压疾病:1,157人
# 可视化展示
omop_condition_occurrence_filtered %>%
mutate(
condition = case_when(
descendant_concept_name == "Essential hypertension" ~ "Essential hypertension",
TRUE ~ "Other Hypertensive disorders"
)
) %>%
distinct(eid, condition) %>%
add_count(eid) %>%
group_by(eid) %>%
summarise(
has_essential = any(condition == "Essential hypertension" & n == 1),
has_other = any(condition == "Other Hypertensive disorders" & n == 1),
has_both = all(condition %in% c("Essential hypertension", "Other Hypertensive disorders") & n == 2)
) %>%
ungroup() %>%
mutate(
condition_combination = case_when(
has_essential ~ "Essential Hypertension",
has_other ~ "Other Hypertensive disorders",
has_both ~ "Has Essential and Other Hypertensive disorders",
TRUE ~ "Unknown"
),
x_var = ""
) %>%
count(x_var, condition_combination) %>%
ggplot(aes(x = x_var, y = n, fill = condition_combination)) +
geom_bar(stat = "identity", position = position_stack(reverse = TRUE)) +
geom_text(aes(label = n, y = n), position = position_stack(vjust = 0.5, reverse = TRUE), size = 3) +
labs(title = "Condition Combinations",
x = "",
y = "Count") +
theme_minimal() +
scale_y_continuous(labels = label_number(scale = 1e0)) +
scale_fill_manual(values = c("#006994", "#00a36f", "#ffa700"))
技术要点
-
概念层级的使用:通过概念层级关系可以捕获更全面的疾病相关数据,避免遗漏重要信息。
-
Spark优化技巧:
- 使用
tbl_cache()缓存常用表 - 优先使用Spark SQL进行复杂查询
- 合理选择join类型减少数据传输
- 使用
-
数据分析策略:
- 先分析概念层级关系确定研究范围
- 逐步过滤和验证数据质量
- 可视化展示关键分析结果
结论
通过本案例研究,我们展示了:
- 使用OMOP概念层级可以显著增加高血压相关病例的捕获数量(增加20.5%)
- 约17%的高血压患者同时具有原发性高血压和其他高血压疾病
- Spark技术能够有效处理大规模OMOP数据分析任务
这种方法不仅适用于高血压研究,也可推广到其他疾病领域的大规模医疗数据分析。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660