Corundum项目FPGA网卡RX模块复位问题分析与解决
问题背景
在基于Corundum开源项目的FPGA网卡开发过程中,开发者遇到了一个棘手的问题:在完成驱动加载和设备启动后,网卡的RX(接收)模块始终处于复位状态,导致无法正常接收网络数据包。该问题出现在将Corundum项目移植到自定义硬件平台的过程中,特别是当使用Zynq UltraScale+ MPSoC作为主控芯片时。
现象描述
系统启动后,通过以下步骤操作:
- 加载Linux内核和mqnic.ko驱动模块
- 加载FPGA比特流
- 执行
ip link set dev eth1 up命令启用网络接口
虽然TX(发送)模块能够正常工作,但RX模块的rx_cfg_enable信号始终为0,导致接收通路被阻塞。通过ILA(集成逻辑分析仪)抓取信号发现,XGMII接口上有数据输入,但由于RX模块未启用,数据无法传递到AXIS总线。
深入分析
驱动行为验证
通过在内核驱动中添加调试打印信息,确认驱动确实执行了以下关键步骤:
- 调用
mqnic_port_set_tx_ctrl()启用TX模块 - 激活调度器
mqnic_activate_sched_block() - 启动所有传输队列
netif_tx_start_all_queues() - 尝试调用
mqnic_port_set_rx_ctrl(MQNIC_PORT_RX_CTRL_EN)启用RX模块
调试信息显示驱动逻辑完整执行,没有报错返回,但RX模块仍未被启用。
寄存器访问问题
通过ILA抓取AXI Lite总线上的寄存器访问情况,发现一个关键现象:虽然驱动尝试写入RX控制寄存器(地址0x13041024)的值为1,但实际总线上观察到的写入值始终为0。这与驱动中的调试打印信息矛盾,表明存在总线传输问题。
总线宽度不匹配
进一步检查发现,系统中存在总线宽度不匹配的问题:
- Zynq PS侧配置为128位AXI主接口
- Corundum IP核使用32位AXI Lite从接口
- 中间使用的AXI Interconnect IP在宽度转换时存在数据丢失
这与Corundum官方提供的ZCU106参考设计不同,参考设计中PS侧配置为32位AXI接口。
解决方案
总线配置调整
将Zynq PS侧的AXI主接口配置从128位改为32位,确保与Corundum IP核的接口宽度一致。这一修改解决了寄存器写入时的数据丢失问题。
验证结果
修改后,系统表现出以下改进:
- RX控制寄存器能够正确写入
rx_cfg_enable信号按预期变为高电平- 网络数据能够正常通过RX通路
通过iperf测试验证了网络性能:
- PC到MPSoC的TCP吞吐量达到655Mbps
- MPSoC到PC的TCP吞吐量达到940Mbps
经验总结
-
总线一致性检查:在异构系统设计中,必须确保主从设备之间的总线参数(如数据宽度)完全匹配,特别是在使用AXI Interconnect进行协议转换时。
-
调试方法:
- 采用分层调试策略,从软件驱动到硬件信号逐层验证
- 结合内核打印和逻辑分析仪进行交叉验证
- 对关键控制信号(如使能信号)进行实时监控
-
参考设计的重要性:在项目移植初期,应严格遵循参考设计的硬件配置,特别是总线接口参数,避免引入不必要的问题。
-
性能优化空间:虽然基本功能已实现,但当前吞吐量与10Gbps的理论带宽仍有差距,后续可针对数据通路优化和驱动参数调优进一步提升性能。
该问题的解决过程展示了FPGA系统设计中硬件-软件协同调试的重要性,也为类似项目的开发提供了有价值的参考经验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00