PEFT项目中的两阶段LoRA微调技术详解
2025-05-12 09:12:09作者:胡易黎Nicole
引言
在大型语言模型(LLM)的微调实践中,参数高效微调(PEFT)技术因其显著降低计算资源需求而广受欢迎。其中,LoRA(Low-Rank Adaptation)作为一种高效的微调方法,允许研究人员在不修改原始模型参数的情况下,通过添加小型可训练矩阵来实现模型适配。本文将深入探讨基于PEFT库的两阶段LoRA微调技术,特别关注如何在不同训练阶段之间保持模型状态的连续性。
两阶段LoRA微调的基本概念
两阶段微调是一种常见的模型优化策略,通常包含以下步骤:
- 第一阶段:在基础模型上进行监督式微调(SFT)
- 第二阶段:在已微调模型上进行直接偏好优化(DPO)
这种分阶段方法能够逐步提升模型性能,同时保持训练过程的稳定性。使用LoRA技术实现这一过程时,需要特别注意各阶段参数的管理和保存方式。
技术实现方案
方案一:连续LoRA适配器训练
这种方法保持了原始基础模型的完整性,通过叠加LoRA适配器实现渐进式优化:
-
初始阶段:
from peft import PeftModel base_model = AutoModelForCausalLM.from_pretrained("qwen1.5-32B") model = PeftModel.from_pretrained(base_model, "qwen1.5_lora_sft", is_trainable=True) -
继续训练: 在第一阶段适配器的基础上直接进行DPO训练,最终保存新的适配器:
# 继续DPO训练... model.save_pretrained("qwen1.5_lora_sft_dpo")
优势:
- 保持原始基础模型不变
- 可以灵活切换不同阶段的适配器
- 节省存储空间(仅需保存适配器参数)
应用场景:
- 需要对比不同阶段模型表现的场景
- 资源受限的环境
- 需要频繁切换适配器的应用
方案二:合并后重新创建适配器
这种方法将前一阶段的适配器合并到基础模型中,然后创建新的适配器:
-
合并第一阶段适配器:
model = PeftModel.from_pretrained(base_model, "qwen1.5_lora_sft") merged_model = model.merge_and_unload() merged_model.save_pretrained("merged_model") -
创建第二阶段适配器:
from peft import LoraConfig, get_peft_model lora_config = LoraConfig(...) model = get_peft_model(merged_model, lora_config) # 进行DPO训练... model.save_pretrained("qwen1.5_lora_dpo")
优势:
- 可以重新定义适配器配置
- 训练过程更稳定
- 适合需要改变LoRA参数的情况
应用场景:
- 需要调整LoRA超参数的场景
- 追求更高模型性能的情况
- 有足够存储资源的项目
技术细节与注意事项
-
参数管理:
- 确保在连续训练时设置
is_trainable=True - 注意不同阶段适配器的命名空间管理
- 确保在连续训练时设置
-
性能考量:
- 方案一的内存占用较低
- 方案二的训练效率可能更高
-
版本控制:
- 建议为每个阶段创建清晰的版本标记
- 保存完整的训练配置信息
-
混合精度训练:
- 两种方案都支持FP16/FP8训练
- 合并操作时需注意精度转换
实际应用建议
对于大多数应用场景,推荐采用方案一的连续适配器训练方法,原因如下:
- 保持了最大的灵活性,可以随时回退到任一阶段
- 节省存储空间,特别是对于大型基础模型
- 便于进行A/B测试比较不同阶段的性能差异
对于需要彻底改变LoRA配置或追求极致性能的场景,方案二可能更为适合,但要注意这会增加存储需求并丧失部分灵活性。
结论
PEFT库提供的LoRA微调技术为实现高效的两阶段模型优化提供了强大支持。通过合理选择适配器管理策略,研究人员可以在资源受限的情况下,仍能实现模型性能的逐步提升。理解这两种方案的优缺点有助于根据具体需求做出最佳选择,从而在模型性能、资源消耗和操作灵活性之间取得理想平衡。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355