PEFT项目中的两阶段LoRA微调技术详解
2025-05-12 09:12:09作者:胡易黎Nicole
引言
在大型语言模型(LLM)的微调实践中,参数高效微调(PEFT)技术因其显著降低计算资源需求而广受欢迎。其中,LoRA(Low-Rank Adaptation)作为一种高效的微调方法,允许研究人员在不修改原始模型参数的情况下,通过添加小型可训练矩阵来实现模型适配。本文将深入探讨基于PEFT库的两阶段LoRA微调技术,特别关注如何在不同训练阶段之间保持模型状态的连续性。
两阶段LoRA微调的基本概念
两阶段微调是一种常见的模型优化策略,通常包含以下步骤:
- 第一阶段:在基础模型上进行监督式微调(SFT)
- 第二阶段:在已微调模型上进行直接偏好优化(DPO)
这种分阶段方法能够逐步提升模型性能,同时保持训练过程的稳定性。使用LoRA技术实现这一过程时,需要特别注意各阶段参数的管理和保存方式。
技术实现方案
方案一:连续LoRA适配器训练
这种方法保持了原始基础模型的完整性,通过叠加LoRA适配器实现渐进式优化:
-
初始阶段:
from peft import PeftModel base_model = AutoModelForCausalLM.from_pretrained("qwen1.5-32B") model = PeftModel.from_pretrained(base_model, "qwen1.5_lora_sft", is_trainable=True) -
继续训练: 在第一阶段适配器的基础上直接进行DPO训练,最终保存新的适配器:
# 继续DPO训练... model.save_pretrained("qwen1.5_lora_sft_dpo")
优势:
- 保持原始基础模型不变
- 可以灵活切换不同阶段的适配器
- 节省存储空间(仅需保存适配器参数)
应用场景:
- 需要对比不同阶段模型表现的场景
- 资源受限的环境
- 需要频繁切换适配器的应用
方案二:合并后重新创建适配器
这种方法将前一阶段的适配器合并到基础模型中,然后创建新的适配器:
-
合并第一阶段适配器:
model = PeftModel.from_pretrained(base_model, "qwen1.5_lora_sft") merged_model = model.merge_and_unload() merged_model.save_pretrained("merged_model") -
创建第二阶段适配器:
from peft import LoraConfig, get_peft_model lora_config = LoraConfig(...) model = get_peft_model(merged_model, lora_config) # 进行DPO训练... model.save_pretrained("qwen1.5_lora_dpo")
优势:
- 可以重新定义适配器配置
- 训练过程更稳定
- 适合需要改变LoRA参数的情况
应用场景:
- 需要调整LoRA超参数的场景
- 追求更高模型性能的情况
- 有足够存储资源的项目
技术细节与注意事项
-
参数管理:
- 确保在连续训练时设置
is_trainable=True - 注意不同阶段适配器的命名空间管理
- 确保在连续训练时设置
-
性能考量:
- 方案一的内存占用较低
- 方案二的训练效率可能更高
-
版本控制:
- 建议为每个阶段创建清晰的版本标记
- 保存完整的训练配置信息
-
混合精度训练:
- 两种方案都支持FP16/FP8训练
- 合并操作时需注意精度转换
实际应用建议
对于大多数应用场景,推荐采用方案一的连续适配器训练方法,原因如下:
- 保持了最大的灵活性,可以随时回退到任一阶段
- 节省存储空间,特别是对于大型基础模型
- 便于进行A/B测试比较不同阶段的性能差异
对于需要彻底改变LoRA配置或追求极致性能的场景,方案二可能更为适合,但要注意这会增加存储需求并丧失部分灵活性。
结论
PEFT库提供的LoRA微调技术为实现高效的两阶段模型优化提供了强大支持。通过合理选择适配器管理策略,研究人员可以在资源受限的情况下,仍能实现模型性能的逐步提升。理解这两种方案的优缺点有助于根据具体需求做出最佳选择,从而在模型性能、资源消耗和操作灵活性之间取得理想平衡。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1