DeepRL 开源项目教程
2024-08-18 06:49:04作者:蔡丛锟
1. 项目的目录结构及介绍
DeepRL 项目的目录结构如下:
DeepRL/
├── agents/
│ ├── __init__.py
│ ├── agent.py
│ ├── dqn_agent.py
│ └── ...
├── envs/
│ ├── __init__.py
│ ├── environment.py
│ └── ...
├── networks/
│ ├── __init__.py
│ ├── network.py
│ └── ...
├── utils/
│ ├── __init__.py
│ ├── logger.py
│ └── ...
├── configs/
│ ├── __init__.py
│ ├── config.py
│ └── ...
├── main.py
├── README.md
└── ...
目录结构介绍
agents/: 包含各种强化学习代理的实现,如 DQN 代理等。envs/: 包含环境相关的代码,如环境接口和具体环境的实现。networks/: 包含神经网络模型的实现。utils/: 包含工具函数和辅助类,如日志记录等。configs/: 包含配置文件相关的代码。main.py: 项目的启动文件。README.md: 项目说明文档。
2. 项目的启动文件介绍
main.py
main.py 是项目的启动文件,负责初始化环境和代理,并开始训练过程。以下是 main.py 的主要功能:
import argparse
from agents import DQNAgent
from envs import Environment
from configs import Config
def main():
parser = argparse.ArgumentParser(description='Deep Reinforcement Learning')
parser.add_argument('--config', type=str, default='default', help='Configuration file name')
args = parser.parse_args()
config = Config(args.config)
env = Environment(config)
agent = DQNAgent(config, env)
agent.train()
if __name__ == '__main__':
main()
功能介绍
- 解析命令行参数,获取配置文件名。
- 根据配置文件初始化环境和代理。
- 调用代理的
train方法开始训练。
3. 项目的配置文件介绍
configs/config.py
configs/config.py 文件负责加载和解析配置文件。以下是 config.py 的主要功能:
import yaml
class Config:
def __init__(self, config_name):
with open(f'configs/{config_name}.yaml', 'r') as file:
self.config = yaml.safe_load(file)
def get(self, key):
return self.config.get(key)
功能介绍
- 从
configs目录中加载指定名称的 YAML 配置文件。 - 提供
get方法,用于获取配置项的值。
配置文件示例
以下是一个示例配置文件 configs/default.yaml:
environment:
name: CartPole-v1
max_steps: 500
agent:
learning_rate: 0.001
discount_factor: 0.99
epsilon_start: 1.0
epsilon_end: 0.1
epsilon_decay: 0.995
配置项介绍
environment: 环境相关的配置,如环境名称和最大步数。agent: 代理相关的配置,如学习率、折扣因子、探索策略等。
通过以上教程,您应该能够了解 DeepRL 项目的目录结构、启动文件和配置文件的基本使用方法。希望这对您有所帮助!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0106
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
480
3.57 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
暂无简介
Dart
731
176
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
251
106
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.29 K
706
React Native鸿蒙化仓库
JavaScript
289
341
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1