Audit.NET 中 MongoDB 数据提供程序的 JSON 序列化问题解析
在使用 Audit.NET 进行审计日志记录时,开发者可能会遇到 MongoDB 数据提供程序中自定义字段的序列化问题。本文将深入分析该问题的成因,并提供多种解决方案。
问题现象
当开发者使用 MongoDB 数据提供程序并配置 Newtonsoft.Json 序列化器时,通过 SetCustomField 方法添加的自定义字段会被嵌套在 "customFields" 对象中,而不是直接出现在文档的根级别。这与预期行为不符,特别是在需要保持数据结构扁平化的场景下。
问题根源
这个问题源于 MongoDB 数据提供程序的序列化机制与 Newtonsoft.Json 的交互方式。当使用 Newtonsoft.Json 作为 JSON 适配器时,如果配置了 CamelCasePropertyNamesContractResolver 作为合约解析器,会覆盖 Audit.NET 内部使用的 AuditContractResolver,导致扩展数据属性无法正确序列化到根级别。
解决方案
方案一:启用 BSON 原生序列化
最简单的解决方案是启用 MongoDB 驱动程序的 BSON 原生序列化功能:
Audit.Core.Configuration.Setup()
.JsonNewtonsoftAdapter(jsonSerializerSettings)
.UseMongoDB(mongo => mongo
.ConnectionString("mongodb://localhost:27017")
.Database("DbName")
.Collection("ColName")
.SerializeAsBson());
启用此选项后,审计事件将直接序列化为 BSON 文档,绕过 JSON 中间格式,从而保持字段结构的扁平化。
方案二:配置 MongoDB 命名约定
如果需要保持 camelCase 命名风格,可以配置 MongoDB 的命名约定:
using MongoDB.Bson.Serialization.Conventions;
var conventionPack = new ConventionPack { new CamelCaseElementNameConvention() };
ConventionRegistry.Register("CamelCase", conventionPack, type => true);
这种方法允许在保持 BSON 序列化的同时,实现字段名的自动转换。
方案三:自定义 AuditContractResolver
对于必须使用 Newtonsoft.Json 的场景,可以自定义 AuditContractResolver 来实现 camelCase 命名:
var jsonSerializerSettings = new JsonSerializerSettings
{
Formatting = Formatting.Indented,
ContractResolver = new AuditContractResolver {
NamingStrategy = new CamelCaseNamingStrategy()
},
Converters = new List<JsonConverter> { new JavaScriptDateTimeConverter() }
};
这种方法既保持了字段的扁平化结构,又实现了命名的规范化。
技术原理
Audit.NET 在处理自定义字段时,依赖于 JsonExtensionDataAttribute 来将动态属性序列化到根级别。当使用自定义的合约解析器时,这一机制可能会被破坏。而 BSON 序列化则直接操作对象图,避免了 JSON 序列化过程中的这一限制。
最佳实践建议
- 对于 MongoDB 存储,优先考虑使用 BSON 原生序列化
- 如果需要特定的命名风格,使用 MongoDB 的命名约定系统
- 仅在必要时使用 Newtonsoft.Json 适配器,并注意合约解析器的配置
- 考虑迁移到 System.Text.Json 作为默认序列化器,以获得更好的性能和兼容性
通过理解这些机制和解决方案,开发者可以更灵活地配置 Audit.NET 以满足各种审计日志需求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00