探索未来搜索:NANN——高度优化的神经网络近似最近邻检索框架
在大数据时代,实时、精准的检索功能已成为各类应用的核心竞争力。阿里巴巴团队开发的NANN(Neural Approximate Nearest Neighbor Search,即“二向箔”)是一款强大的、基于纯TensorFlow的检索框架,它专为大规模高维数据的快速检索设计。NANN旨在提供一种灵活、高性能的解决方案,适用于各种复杂的业务场景。
项目背景与创新之处
NANN源于2021年阿里巴巴内部的研究成果,经过深度优化,已在淘宝的展示广告、神马搜索等多个关键业务中广泛应用。其独特之处在于,NANN不仅提供高效的近似最近邻检索,还允许用户使用任意复杂的神经网络模型进行相似性度量。通过对抗训练保证了检索性能,且模型训练与索引构建相互独立,降低了计算成本。
技术亮点剖析
-
模型训练自由度:NANN的设计允许用户不拘泥于特定模型结构,且支持对抗训练,确保在复杂模型下也能保持优异的检索性能。
-
性能优化:利用TensorFlow Custom Ops重新实现了High-dimensional Neighborhood System with Walls (HNSW)检索,大大提升了在线检索效率。同时,NANN支持GPU Multi-Streaming与Multi-Contexts、XLA编译优化以及针对推荐、搜索领域的图级优化,全方位提升系统效能。
-
易用性增强:作为原生TensorFlow生态的一部分,NANN简化了模型推理和检索流程,使开发者能专注于模型本身的优化,而不用担心检索逻辑。此外,提供的基准测试工具可直观地检测推理性能。
应用场景与价值
NANN特别适合那些需要实时、精确检索服务的场景,如搜索引擎、推荐系统和个性化广告平台。无论是在电子商务、新闻推荐还是学术研究等领域,NANN都能帮助提高用户体验,提升系统响应速度,并降低服务器资源消耗。
使用与安装
NANN的安装过程简洁明了,只需从GitHub克隆仓库,然后通过Docker拉取预配置的开发环境。所有必要的依赖项,包括TensorFlow和相关库,都已预先集成,只需要几个命令即可完成编译和安装。
总的来说,NANN是一个面向未来的检索框架,它的出现打破了传统检索技术的界限,以其灵活性、高性能和用户友好性,无疑将成为开发者在处理大规模数据检索问题时的理想选择。立即开始探索NANN,让您的应用拥有更快更准的搜索体验吧!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









