探索未来搜索:NANN——高度优化的神经网络近似最近邻检索框架
在大数据时代,实时、精准的检索功能已成为各类应用的核心竞争力。阿里巴巴团队开发的NANN(Neural Approximate Nearest Neighbor Search,即“二向箔”)是一款强大的、基于纯TensorFlow的检索框架,它专为大规模高维数据的快速检索设计。NANN旨在提供一种灵活、高性能的解决方案,适用于各种复杂的业务场景。
项目背景与创新之处
NANN源于2021年阿里巴巴内部的研究成果,经过深度优化,已在淘宝的展示广告、神马搜索等多个关键业务中广泛应用。其独特之处在于,NANN不仅提供高效的近似最近邻检索,还允许用户使用任意复杂的神经网络模型进行相似性度量。通过对抗训练保证了检索性能,且模型训练与索引构建相互独立,降低了计算成本。
技术亮点剖析
-
模型训练自由度:NANN的设计允许用户不拘泥于特定模型结构,且支持对抗训练,确保在复杂模型下也能保持优异的检索性能。
-
性能优化:利用TensorFlow Custom Ops重新实现了High-dimensional Neighborhood System with Walls (HNSW)检索,大大提升了在线检索效率。同时,NANN支持GPU Multi-Streaming与Multi-Contexts、XLA编译优化以及针对推荐、搜索领域的图级优化,全方位提升系统效能。
-
易用性增强:作为原生TensorFlow生态的一部分,NANN简化了模型推理和检索流程,使开发者能专注于模型本身的优化,而不用担心检索逻辑。此外,提供的基准测试工具可直观地检测推理性能。
应用场景与价值
NANN特别适合那些需要实时、精确检索服务的场景,如搜索引擎、推荐系统和个性化广告平台。无论是在电子商务、新闻推荐还是学术研究等领域,NANN都能帮助提高用户体验,提升系统响应速度,并降低服务器资源消耗。
使用与安装
NANN的安装过程简洁明了,只需从GitHub克隆仓库,然后通过Docker拉取预配置的开发环境。所有必要的依赖项,包括TensorFlow和相关库,都已预先集成,只需要几个命令即可完成编译和安装。
总的来说,NANN是一个面向未来的检索框架,它的出现打破了传统检索技术的界限,以其灵活性、高性能和用户友好性,无疑将成为开发者在处理大规模数据检索问题时的理想选择。立即开始探索NANN,让您的应用拥有更快更准的搜索体验吧!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00