LAMMPS中计算步骤调度的API扩展需求分析
2025-07-01 13:47:18作者:农烁颖Land
背景介绍
在分子动力学模拟软件LAMMPS中,某些计算(compute)如stress/atom需要在当前时间步计算维里(virial)。当通过库接口(extract_compute)在任意时间步访问这些计算时,目前缺乏一种机制来将这些步骤添加到计算中(通过addstep)。
问题描述
在大型模拟中,当Python分析代码作为常规积分循环的一部分在固定间隔运行(通过fix python/invoke)时,会遇到一个关键问题:虽然对样式(pair style)计算已经完成且邻居列表可访问,但缺少必要的addstep调用,导致无法为compute stress/atom调度维里计算。
技术挑战
- 计算调度机制:LAMMPS通过ev_set()在每个时间步开始时设置传递给Pair::compute()的标记
- 时间步协调:在时间步开始时设置计算标记已经太晚
- 间接调用问题:计算可能通过各种操作间接调用,Python代码可能以类似于输入脚本的方式触发这些操作
解决方案探讨
现有机制分析
LAMMPS目前通过modify->clearstep()和modify->addstep_compute()配对来释放调用代码的负担:
- 不需要关心括号代码调用了哪些计算
- 自动设置未来步骤以计算需要的能量/维里量
改进方案
-
FixPythonInvoke修改:
- 在FixPythonInvoke::end_of_step()和post_force()中添加调度代码
- 类似FixAveTime::invoke_scalar()或FixAdapt::change_settings()的实现
- 基本模式:
modify->clearstep_compute(); // 调用Python函数 modify->addstep_compute(update->ntimestep + nevery);
-
初始化处理:
- 类似FixAveTime::init()的处理
- 调用modify->addstep_compute_all(nvalid)
- 确保首次调用end_of_step()时正确标记时间步
实现考量
- 性能影响:addstep_compute()与单个计算add_step相比没有明显的同步性能损失
- 通用性问题:该方案解决了python/invoke用例,但对于任意run X后获取时间步信息的情况仍需考虑
- 变量准确性:类似输入脚本中打印命令使用变量访问计算时遇到的问题
技术展望
虽然当前解决方案聚焦于fix python/invoke用例,但从长远来看,为Python代码提供直接为计算设置未来时间步的库接口函数仍然有价值。这需要仔细考虑:
- 计算标记设置的时机限制
- 间接调用计算的识别问题
- 与现有调度机制的兼容性
这种扩展将使LAMMPS的库接口更加灵活,支持更复杂的在线分析场景,同时保持计算效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135