LAMMPS中计算步骤调度的API扩展需求分析
2025-07-01 21:02:29作者:农烁颖Land
背景介绍
在分子动力学模拟软件LAMMPS中,某些计算(compute)如stress/atom需要在当前时间步计算维里(virial)。当通过库接口(extract_compute)在任意时间步访问这些计算时,目前缺乏一种机制来将这些步骤添加到计算中(通过addstep)。
问题描述
在大型模拟中,当Python分析代码作为常规积分循环的一部分在固定间隔运行(通过fix python/invoke)时,会遇到一个关键问题:虽然对样式(pair style)计算已经完成且邻居列表可访问,但缺少必要的addstep调用,导致无法为compute stress/atom调度维里计算。
技术挑战
- 计算调度机制:LAMMPS通过ev_set()在每个时间步开始时设置传递给Pair::compute()的标记
- 时间步协调:在时间步开始时设置计算标记已经太晚
- 间接调用问题:计算可能通过各种操作间接调用,Python代码可能以类似于输入脚本的方式触发这些操作
解决方案探讨
现有机制分析
LAMMPS目前通过modify->clearstep()和modify->addstep_compute()配对来释放调用代码的负担:
- 不需要关心括号代码调用了哪些计算
- 自动设置未来步骤以计算需要的能量/维里量
改进方案
-
FixPythonInvoke修改:
- 在FixPythonInvoke::end_of_step()和post_force()中添加调度代码
- 类似FixAveTime::invoke_scalar()或FixAdapt::change_settings()的实现
- 基本模式:
modify->clearstep_compute(); // 调用Python函数 modify->addstep_compute(update->ntimestep + nevery);
-
初始化处理:
- 类似FixAveTime::init()的处理
- 调用modify->addstep_compute_all(nvalid)
- 确保首次调用end_of_step()时正确标记时间步
实现考量
- 性能影响:addstep_compute()与单个计算add_step相比没有明显的同步性能损失
- 通用性问题:该方案解决了python/invoke用例,但对于任意run X后获取时间步信息的情况仍需考虑
- 变量准确性:类似输入脚本中打印命令使用变量访问计算时遇到的问题
技术展望
虽然当前解决方案聚焦于fix python/invoke用例,但从长远来看,为Python代码提供直接为计算设置未来时间步的库接口函数仍然有价值。这需要仔细考虑:
- 计算标记设置的时机限制
- 间接调用计算的识别问题
- 与现有调度机制的兼容性
这种扩展将使LAMMPS的库接口更加灵活,支持更复杂的在线分析场景,同时保持计算效率。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143