【亲测免费】 KAI Scheduler:优化GPU资源分配的Kubernetes调度器
2026-01-30 05:06:05作者:田桥桑Industrious
项目核心功能/场景
KAI Scheduler 是一款强大的Kubernetes调度器,专注于优化AI和机器学习工作负载的GPU资源分配。
项目介绍
KAI Scheduler 设计用于管理大规模GPU集群,包括成千上万的节点和高吞吐量的工作负载。它特别适合于广泛和苛刻的环境。管理员可以利用KAI Scheduler动态地为Kubernetes集群中的工作负载分配GPU资源。
KAI Scheduler 支持整个AI生命周期,从需要最少资源的小型交互式任务到同一集群内的大型训练和推理任务。它确保了资源的最优分配,并在不同的消费者之间保持资源公平性。它还可以与其他已安装在集群上的调度器共同运行。
项目技术分析
KAI Scheduler 基于Kubernetes调度器,提供了一系列高级特性,用于优化GPU资源的调度和管理。以下是其技术特点:
- 批调度:确保一个组内的所有Pod要么同时被调度,要么一个都不调度。
- 装箱调度与扩散调度:通过最小化碎片化(装箱调度)或增加弹性和负载均衡(扩散调度)来优化节点使用。
- 工作负载优先级:在队列中有效地优先调度工作负载。
- 分层队列:使用两级队列层次结构管理工作负载,实现灵活的组织控制。
- 资源分配:为每个队列自定义配额、超配额权重、限制和优先级。
- 公平性策略:使用支配资源公平性(DRF)和跨队列的资源回收策略确保公平的资源分配。
- 工作负载合并:智能地重新分配运行中的工作负载,以减少碎片化和提高集群利用率。
- 弹性工作负载:在定义的最小和最大Pod数量范围内动态调整工作负载。
- 动态资源分配:通过Kubernetes ResourceClaims支持特定供应商的硬件资源(例如,NVIDIA或AMD的GPU)。
- GPU共享:允许多个工作负载高效地共享一个或多个GPU,最大化资源利用率。
- 云和本地支持:完全兼容动态云基础设施(包括自动扩展器如Karpenter)以及静态本地部署。
项目技术应用场景
KAI Scheduler 适用于以下几种技术应用场景:
- 大型AI训练:对于需要大量GPU资源的大型AI训练任务,KAI Scheduler可以有效地管理和分配资源,确保训练任务的高效执行。
- 机器学习模型推理:在模型推理阶段,KAI Scheduler能够动态调整资源,以满足不同负载的需求,提高资源利用率。
- 多云和混合云环境:无论是在云环境还是本地部署中,KAI Scheduler都能提供一致的调度策略,确保资源的高效使用。
项目特点
- 高度可扩展性:KAI Scheduler 能够处理大规模的GPU集群,确保在高负载情况下依然能够高效调度资源。
- 灵活性:通过分层队列和工作负载优先级,管理员可以根据需要灵活管理资源分配。
- 资源优化:通过工作负载合并和弹性工作负载特性,KAI Scheduler 能够最大化资源利用率。
- 兼容性:支持多种部署环境,包括动态云基础设施和静态本地部署。
总结来说,KAI Scheduler 是一个针对GPU资源优化调度的高效Kubernetes调度器,适用于多种规模和复杂度的AI和机器学习工作负载。通过其先进的技术特性和灵活的调度策略,它为管理员提供了一个强大的工具来管理和优化GPU资源。无论是大型训练任务还是多云环境中的模型推理,KAI Scheduler 都能够提供出色的性能和效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248