探索图像美学:深度学习的摄影审美评价网络(Photo Aesthetics Ranking Network)
在数字图像和社交媒体的时代,我们每天都会接触到大量的照片。那么,如何衡量一张照片的艺术美感呢?这就是Photo Aesthetics Ranking Network with Attributes and Content Adaptation项目所关注的问题。这是一个由Adobe Research和加州大学欧文分校联合进行的研究项目,旨在通过深度学习技术来分析和评估图像的美学价值。
项目介绍
该项目提供了一套完整的代码、演示和模型,用于实现对图像美学的深度学习分析。特别的是,它基于一个大型的公开数据集——AADB(Adobe Aesthetics Attribute Dataset),包含了从Flickr下载的具有创意公共许可的图片。项目还包括了使用Rank Loss训练的Caffe模型示例,以及一个演示界面,让用户直观地了解如何加载和解释模型。
项目技术分析
项目的技术核心是一个深度神经网络,名为"mergedNetRank",该网络采用Rank Loss进行训练,能够理解并适应图像的内容和属性,从而对照片的美学质量进行排名。这个模型是在经过修改的Caffe框架上运行的,即caffeCustom.zip,它为研究人员提供了在自己的环境中复现实验的可能。
此外,项目还提供了在另一个广泛使用的数据集——AVA(Aesthetic Visual Analysis)上训练的模型,附带MATLAB测试代码,便于研究人员进一步探索和应用。
应用场景
这个项目和技术可以应用于多个领域,包括但不限于:
- 图像编辑软件:集成到图像编辑工具中,为用户提供实时的审美反馈和提升建议。
- 社交平台:帮助推荐系统理解和预测用户可能喜欢的高质量照片。
- 学术研究:供研究人员研究视觉审美标准,探索人工智能与人类审美感知的差异。
项目特点
- 大规模数据集:AADB数据集包含大量真实世界中的照片,为训练提供了丰富多样的样本。
- 深度学习模型:利用 Rank Loss 策略训练的神经网络能综合考虑图像内容和属性,评价更准确。
- 实用的演示界面:直观展示模型如何工作,便于理解和应用。
- 开放源码:所有代码、模型和数据集都可供研究者自由使用和改进。
如果您对图像美学分析或深度学习感兴趣,或者正在寻找这样的工具来增强您的项目,那么这个项目无疑值得尝试。请务必尊重专利权,并确保非商业用途。如需更多信息,请参考项目的ECCV2016论文或直接联系作者Shu Kong。
记得如果本项目和数据集对您有所帮助,请引用以下文献:
@inproceedings{kong2016aesthetics,
title={Photo Aesthetics Ranking Network with Attributes and Content Adaptation},
author={Kong, Shu and Shen, Xiaohui and Lin, Zhe and Mech, Radomir and Fowlkes, Charless},
booktitle={ECCV},
year={2016}
}
让我们一起探索图像美学的世界,让机器也能洞察艺术之美。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00