DynamoRIO核心分片磁盘内存追踪中的跳过指令支持优化
2025-06-28 11:12:19作者:伍希望
在DynamoRIO项目的内存追踪功能中,核心分片磁盘模式(core-sharded-on-disk)是一种重要的执行轨迹记录方式。近期开发团队针对该模式下的指令跳过(skipping)和关注区域(regions-of-interest)功能进行了重要优化,解决了三个关键问题。
背景与问题分析
核心分片磁盘内存追踪模式会将不同核心的执行轨迹分别存储,这种设计带来了两个特殊的技术挑战:
-
页脚处理异常:现有代码在遇到轨迹文件页脚(footer)时会错误终止处理流程。实际上在该模式下,当软件线程退出时页脚会保留在文件中,不应被视为终止信号。
-
输入处理中断:同样地,在处理输入条目时遇到页脚也会导致处理流程意外中止。
-
线程ID识别问题:调度器的关注区域功能依赖线程ID(tid)来标识需要应用特定区域的输入子集。当前实现通过读取第一个tid来识别核心分片磁盘追踪,但这种方法存在缺陷,因为首个tid不一定唯一,且对用户不够友好。
解决方案实现
开发团队通过以下代码修改解决了这些问题:
-
修改了
reader_t::skip_instructions_with_timestamp()方法的循环逻辑,使其正确处理页脚而非直接退出。 -
调整了
reader_t::process_input_entry()方法,消除其对页脚的过度敏感反应。 -
改进了调度器的关注区域功能,使其不再依赖可能不唯一的首个tid标识,提供了更可靠的线程识别机制。
技术意义
这些优化使得:
- 核心分片磁盘内存追踪模式能够完整支持指令跳过功能
- 用户可以更精确地定义和分析执行轨迹中的特定关注区域
- 提升了工具在复杂多线程场景下的稳定性和可用性
该改进已通过完整的测试验证,并合并到主分支中,为使用DynamoRIO进行性能分析和调试的开发人员提供了更强大的工具支持。
后续方向
开发团队建议用户:
- 在分析多线程应用时积极尝试新的关注区域功能
- 注意新版API中线程标识方式的变化
- 反馈在实际大规模追踪场景中的使用体验
这些改进显著增强了DynamoRIO在复杂并发程序分析方面的能力,为系统级性能调优提供了更可靠的基础设施。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143