首页
/ DynamoRIO核心分片磁盘内存追踪中的跳过指令支持优化

DynamoRIO核心分片磁盘内存追踪中的跳过指令支持优化

2025-06-28 20:59:47作者:伍希望

在DynamoRIO项目的内存追踪功能中,核心分片磁盘模式(core-sharded-on-disk)是一种重要的执行轨迹记录方式。近期开发团队针对该模式下的指令跳过(skipping)和关注区域(regions-of-interest)功能进行了重要优化,解决了三个关键问题。

背景与问题分析

核心分片磁盘内存追踪模式会将不同核心的执行轨迹分别存储,这种设计带来了两个特殊的技术挑战:

  1. 页脚处理异常:现有代码在遇到轨迹文件页脚(footer)时会错误终止处理流程。实际上在该模式下,当软件线程退出时页脚会保留在文件中,不应被视为终止信号。

  2. 输入处理中断:同样地,在处理输入条目时遇到页脚也会导致处理流程意外中止。

  3. 线程ID识别问题:调度器的关注区域功能依赖线程ID(tid)来标识需要应用特定区域的输入子集。当前实现通过读取第一个tid来识别核心分片磁盘追踪,但这种方法存在缺陷,因为首个tid不一定唯一,且对用户不够友好。

解决方案实现

开发团队通过以下代码修改解决了这些问题:

  1. 修改了reader_t::skip_instructions_with_timestamp()方法的循环逻辑,使其正确处理页脚而非直接退出。

  2. 调整了reader_t::process_input_entry()方法,消除其对页脚的过度敏感反应。

  3. 改进了调度器的关注区域功能,使其不再依赖可能不唯一的首个tid标识,提供了更可靠的线程识别机制。

技术意义

这些优化使得:

  • 核心分片磁盘内存追踪模式能够完整支持指令跳过功能
  • 用户可以更精确地定义和分析执行轨迹中的特定关注区域
  • 提升了工具在复杂多线程场景下的稳定性和可用性

该改进已通过完整的测试验证,并合并到主分支中,为使用DynamoRIO进行性能分析和调试的开发人员提供了更强大的工具支持。

后续方向

开发团队建议用户:

  1. 在分析多线程应用时积极尝试新的关注区域功能
  2. 注意新版API中线程标识方式的变化
  3. 反馈在实际大规模追踪场景中的使用体验

这些改进显著增强了DynamoRIO在复杂并发程序分析方面的能力,为系统级性能调优提供了更可靠的基础设施。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
506
42
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
194
279
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
940
554
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
335
11
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70