Mangum ASGI Adapter 使用指南
2024-08-26 09:13:59作者:秋泉律Samson
Mangum 是一个用于在 AWS Lambda 环境中运行 ASGI 应用程序的适配器,它支持处理诸如 API Gateway 的 HTTP 和 REST API、Application Load Balancer 以及 Lambda@Edge 事件。本教程将引导您了解其基本的目录结构、启动文件和配置方法。
1. 项目目录结构及介绍
Mangum 的项目目录结构遵循简洁明了的原则,确保开发者能够快速上手。以下是典型的核心目录和文件说明:
.
├── CHANGELOG.md # 版本更新日志
├── CONTRIBUTING.md # 贡献指南
├── LICENSE # 许可证文件,采用 MIT 协议
├── README.md # 项目简介和快速入门文档
├── setup.cfg # 配置打包选项
├── setup.py # Python 包的安装脚本
├── tests # 测试套件所在目录
│ └── ... # 包含测试用例和相关文件
├── mangum # 主要源代码包,包含核心功能
│ ├── __init__.py # 入口点,定义 Mangum 类
│ └── ... # 其他相关模块
├── examples # 示例应用,展示如何使用 Mangum
│ └── ... # 各类示例代码
├── scripts # 可能包含一些维护或辅助脚本
├── requirements.txt # 项目依赖列表
├── pytest.ini # Pytest 配置文件
└── mkdocs.yml # 文档生成配置,用于构建项目文档网站
2. 项目的启动文件介绍
Mangum 的使用通常不需要直接编辑特定的“启动文件”,而是通过您的ASGI应用程序来间接调用。例如,当您有一个FastAPI的应用时,您会在应用的主入口点引入Mangum并创建处理器:
# 假设这是你的FastAPI应用的启动文件(app.py)
from fastapi import FastAPI
from mangum import Mangum
app = FastAPI()
@app.get("/")
async def root():
return {"message": "Hello World"}
handler = Mangum(app, lifespan="off")
这段代码中的 app.py 就扮演了“启动文件”的角色,其中通过 Mangum(app) 初始化了Lambda处理器,使得该应用能够在AWS Lambda环境中正确响应HTTP请求。
3. 项目的配置文件介绍
Mangum本身的配置主要不是通过传统意义上的独立配置文件进行,而是通过在实例化Mangum对象时传递参数实现。比如,可以通过设置 lifespan 参数来控制ASGI应用的生命周期管理。此外,项目依赖和额外的配置往往通过Python的常见方式(如.env文件或直接在代码中指定)来管理。
- 环境变量和依赖:虽然不在项目内部,但重要的配置如AWS访问密钥、环境特定的行为等,通常通过环境变量设置。
- 代码内的配置:如上述示例所示,通过初始化Mangum时的参数进行配置,是管理Mangum行为的主要方式。
重要的是要注意,对于更复杂的部署场景,可能还需要配置AWS的相关服务(如Lambda函数、API Gateway等),这些配置通常在AWS Management Console、Serverless Framework或者AWS SAM模板中完成,而非直接在Mangum项目内。
以上就是关于Mangum项目的基本结构、启动逻辑和配置方式的简要介绍,帮助您快速理解和运用此工具。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19