PiDiNet:高效边缘检测的像素差异网络使用教程
2024-10-10 15:51:03作者:农烁颖Land
一、项目概述
本教程基于PiDiNet,一个旨在高效边缘检测的开源项目。该项目源自ICCV 2021一篇口头报告论文“Pixel Difference Networks for Efficient Edge Detection”。它通过创新的网络设计实现了高效的边缘检测任务。
二、项目目录结构及介绍
以下是pidinet项目的主目录结构及其简要描述:
data: 存放数据集相关文件或下载脚本。trained_models: 训练好的模型权重存放处。training_logs: 训练过程中的日志文件。scripts: 包含用于训练、测试、转换模型等的脚本文件。models: 定义了网络结构的PyTorch代码,包括核心的Pixel Difference Network架构。edge_dataloader.py: 边缘检测的数据加载器。main.py: 主程序文件,负责模型的训练和评估。pdc.bib: BibTeX格式的参考文献信息。README.md: 项目简介和使用说明。LICENSE: 许可证文件,表明项目使用的许可协议。
三、项目启动文件介绍
main.py
这是项目的核心执行文件,支持模型的训练、验证和边缘图生成。可以通过命令行参数指定不同的操作:
- 训练模型: 提供模型配置、数据路径、是否恢复训练等参数进行模型的训练。
- 生成边缘图: 指定预训练模型权重路径,可以对新的或现有的图像数据集生成边缘检测结果。
- 性能测试: 可以计算模型在特定硬件上的FPS(帧率)。
示例命令来训练模型(具体路径需替换为你本地的实际路径):
python main.py --model pidinet --config carv4 --sa --dil --resume --iter-size 24 -j 4 --gpu 0 --epochs 20 --lr 0.005 --lr-type multistep --lr-steps 10-16 --wd 1e-4 --savedir /path/to/training_dir --datadir /path/to/dataset --dataset BSDS
四、项目的配置文件介绍
虽然没有明确提及单独的配置文件,但项目的重要配置是通过main.py中的命令行参数实现的。这些参数控制着模型类型(--model)、配置选项(--config)、是否使用空间注意力(--sa)、是否使用扩张卷积(--dil)、训练细节如迭代大小(--iter-size)、工作线程数(-j)、GPU选择(--gpu)、学习速率(--lr)等关键设置。用户可以根据需要调整这些参数以适应不同的实验需求。
请注意,尽管上述信息提供了基本的项目导航和使用指导,实际应用中应详细阅读项目内的README.md文件以及各脚本注释,确保正确理解和运用项目功能。此外,创建或修改配置时,建议遵循已有的参数命名和实践习惯,以便保持代码的一致性和易读性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250