PiDiNet:高效边缘检测的像素差异网络使用教程
2024-10-10 19:40:01作者:农烁颖Land
一、项目概述
本教程基于PiDiNet,一个旨在高效边缘检测的开源项目。该项目源自ICCV 2021一篇口头报告论文“Pixel Difference Networks for Efficient Edge Detection”。它通过创新的网络设计实现了高效的边缘检测任务。
二、项目目录结构及介绍
以下是pidinet项目的主目录结构及其简要描述:
data: 存放数据集相关文件或下载脚本。trained_models: 训练好的模型权重存放处。training_logs: 训练过程中的日志文件。scripts: 包含用于训练、测试、转换模型等的脚本文件。models: 定义了网络结构的PyTorch代码,包括核心的Pixel Difference Network架构。edge_dataloader.py: 边缘检测的数据加载器。main.py: 主程序文件,负责模型的训练和评估。pdc.bib: BibTeX格式的参考文献信息。README.md: 项目简介和使用说明。LICENSE: 许可证文件,表明项目使用的许可协议。
三、项目启动文件介绍
main.py
这是项目的核心执行文件,支持模型的训练、验证和边缘图生成。可以通过命令行参数指定不同的操作:
- 训练模型: 提供模型配置、数据路径、是否恢复训练等参数进行模型的训练。
- 生成边缘图: 指定预训练模型权重路径,可以对新的或现有的图像数据集生成边缘检测结果。
- 性能测试: 可以计算模型在特定硬件上的FPS(帧率)。
示例命令来训练模型(具体路径需替换为你本地的实际路径):
python main.py --model pidinet --config carv4 --sa --dil --resume --iter-size 24 -j 4 --gpu 0 --epochs 20 --lr 0.005 --lr-type multistep --lr-steps 10-16 --wd 1e-4 --savedir /path/to/training_dir --datadir /path/to/dataset --dataset BSDS
四、项目的配置文件介绍
虽然没有明确提及单独的配置文件,但项目的重要配置是通过main.py中的命令行参数实现的。这些参数控制着模型类型(--model)、配置选项(--config)、是否使用空间注意力(--sa)、是否使用扩张卷积(--dil)、训练细节如迭代大小(--iter-size)、工作线程数(-j)、GPU选择(--gpu)、学习速率(--lr)等关键设置。用户可以根据需要调整这些参数以适应不同的实验需求。
请注意,尽管上述信息提供了基本的项目导航和使用指导,实际应用中应详细阅读项目内的README.md文件以及各脚本注释,确保正确理解和运用项目功能。此外,创建或修改配置时,建议遵循已有的参数命名和实践习惯,以便保持代码的一致性和易读性。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258