SDFusion开源项目下载与安装教程
2024-12-07 03:35:06作者:傅爽业Veleda
1. 项目介绍
SDFusion 是一个基于扩散模型的3D形状生成器,它支持多种输入模态,包括部分形状、图像和文本。该项目能够处理多种条件模态,并控制每种模态的强度。此外,它还支持将预训练的2D模型用于3D形状的纹理处理,并可以使用3D打印机打印生成的形状。
2. 项目下载位置
项目托管在 GitHub 上,您可以访问以下位置进行下载:
https://github.com/yccyenchicheng/SDFusion.git
3. 项目安装环境配置
配置环境
首先,您需要配置Python环境。推荐使用Conda进行环境管理。
conda create -n sdfusion python=3.8 -y && conda activate sdfusion
接下来,安装所需的Python包:
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=11.3 -c pytorch -c conda-forge -y
conda install -c fvcore -c iopath -c conda-forge fvcore iopath -y
conda install pytorch3d -c pytorch3d
pip install h5py joblib termcolor scipy einops tqdm matplotlib opencv-python PyMCubes imageio trimesh omegaconf tensorboard notebook
图片示例
以下是Conda环境创建和激活的示例:

4. 项目安装方式
下载项目
从GitHub克隆项目到本地:
git clone https://github.com/yccyenchicheng/SDFusion.git
下载预训练权重
创建一个文件夹用于保存预训练权重:
mkdir saved_ckpt
然后下载预训练权重到该文件夹:
# VQVAE's checkpoint
wget https://uofi.box.com/shared/static/zdb9pm9wmxaupzclc7m8gzluj20ja0b6.pth -O saved_ckpt/vqvae-snet-all.pth
# SDFusion
wget https://uofi.box.com/shared/static/ueo01ctnlzobp2dmvd8iexy1bdsquuc1.pth -O saved_ckpt/sdfusion-snet-all.pth
# SDFusion: single-view reconstruction (img2shape)
wget https://uofi.box.com/shared/static/01hnf7pbewft4115qkvv9zhh22v4d8ma.pth -O saved_ckpt/sdfusion-img2shape.pth
# SDFusion: text-guided shape generation (txt2shape)
wget https://uofi.box.com/shared/static/vyqs6aex3rwbgxweyl3qh21c8p6vu33f.pth -O saved_ckpt/sdfusion-txt2shape.pth
# SDFusion: multi-modal conditional shape generation (partial shape + [ img [and/or] txt] -> shape)
wget https://uofi.box.com/shared/static/d95l3465arc0ffley5vwmz8bscaubmhc.pth -O saved_ckpt/sdfusion-mm2shape.pth
5. 项目处理脚本
根据项目官方文档,您可以通过运行以下命令来预处理数据和使用预训练模型:
# 示例:预处理ShapeNet数据集
mkdir -p data/ShapeNet && cd data/ShapeNet
wget [url for downloading ShapeNetV1]
unzip ShapeNetCore_v1.zip
/launchers/unzip_snet_zipfiles.sh
cd preprocess
/launchers/launch_create_sdf_shapenet.sh
请注意,上述命令中的 [url for downloading ShapeNetV1] 应替换为ShapeNet官方提供的下载链接。
以上步骤将帮助您成功下载并安装SDFusion项目。您可以参考官方文档中的其他脚本和命令来进行更详细的操作。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1