MLJAR-Supervised项目中多报告页面导航问题的技术分析
2025-06-26 02:49:05作者:俞予舒Fleming
在机器学习自动化工具MLJAR-Supervised的使用过程中,用户发现了一个影响工作流程的界面交互问题。当用户在Jupyter Notebook环境中同时打开两个AutoML生成的报告时,会出现无法从排行榜(leaderboard)正常导航到模型文档的情况。
问题现象重现
通过以下代码可以稳定复现该问题:
import numpy as np
import pandas as pd
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from supervised.automl import AutoML
# 加载加州房价数据集
housing = fetch_california_housing()
X_train, X_test, y_train, y_test = train_test_split(
pd.DataFrame(housing.data, columns=housing.feature_names),
housing.target,
test_size=0.25,
random_state=123,
)
# 第一次AutoML训练和报告生成
automl = AutoML(mode="Explain")
automl.fit(X_train, y_train)
automl.report()
# 第二次AutoML训练和报告生成
automl2 = AutoML(mode="Explain")
automl2.fit(X_train, y_train)
automl2.report()
技术背景分析
MLJAR-Supervised是一个自动化机器学习工具,其"Explain"模式会生成详细的HTML报告,包含模型性能比较、特征重要性分析等内容。在Jupyter Notebook中,这些报告通常以交互式HTML组件的形式展示。
报告中的导航功能依赖于JavaScript事件处理和DOM元素ID的唯一性。当多个报告同时存在时,可能会出现以下技术问题:
- ID冲突:多个报告可能使用相同的HTML元素ID,导致JavaScript事件绑定到错误的元素上
- 事件冒泡:JavaScript事件可能在多个报告组件之间错误传播
- 作用域污染:全局JavaScript变量和函数可能被后续报告覆盖
解决方案思路
针对这类前端交互问题,开发团队可以考虑以下解决方案方向:
- 命名空间隔离:为每个报告实例生成唯一的前缀或命名空间,确保DOM ID和JavaScript变量不会冲突
- 组件隔离:利用Web组件的特性隔离各个报告的DOM树
- 实例标识:在事件处理中加入报告实例标识,确保事件只作用于正确的报告
- 单例模式:限制同一时间只能打开一个报告,避免并发问题
对用户的影响评估
这个问题主要影响以下工作场景:
- 需要同时比较不同AutoML运行结果的用户
- 在Notebook中保留历史分析记录的研究人员
- 进行模型对比实验的数据科学家
虽然不影响核心的模型训练功能,但会降低用户体验和报告的可交互性。对于依赖报告导航功能的用户,目前可以采取以下临时解决方案:
- 每次只打开一个报告
- 将报告保存为独立HTML文件后分别查看
- 使用不同的浏览器标签页查看不同报告
总结
多报告导航问题反映了前端组件在复杂环境下的交互挑战。MLJAR-Supervised团队已经注意到这个问题,并在代码提交中进行了修复。这类问题的解决不仅提升了工具的用户体验,也为其他类似场景的前端设计提供了参考案例。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133