GoMAvatar 开源项目最佳实践教程
2025-05-21 04:26:15作者:伍霜盼Ellen
1. 项目介绍
GoMAvatar 是一个基于单目视频的高效可动画化人体建模项目,它通过使用 Gaussians-on-Mesh 技术来实现。该项目旨在为研究人员和开发者提供一个有效的工具,以便从单目视频中创建出可以进行动画处理的人体模型。GoMAvatar 在 CVPR 2024 论文中被提出,由 Jing Wen、Xiaoming Zhao、Zhongzheng Ren、Alex Schwing 和 Shenlong Wang 合作完成。
2. 项目快速启动
环境准备
- CUDA 11.6
- PyTorch 1.13.0
- PyTorch3D 0.7.0
安装依赖
首先,创建一个新的 Conda 环境,并激活它:
conda create -n GoMAvatar
conda activate GoMAvatar
然后,安装所需的 PyTorch 和 CUDA 相关包:
conda install pytorch==1.13.0 torchvision==0.14.0 pytorch-cuda=11.6 -c pytorch -c nvidia
接下来,安装其他依赖:
pip install -r requirements.txt
安装 PyTorch3D:
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install pytorch3d -c pytorch3d
安装 Gaussian splatting:
pip install git+https://github.com/graphdeco-inria/diff-gaussian-rasterization
数据准备
- 下载 SMPL v1.0.0 的男性和女性模型,以及中性模型,并将
.pkl
文件放在utils/smpl/models
目录下。 - 下载 ZJU-MoCap 数据集并保存在
data/zju-mocap
目录下,然后运行相应的预处理脚本。 - 下载 PeopleSnapshot 数据集并保存在
data/snapshot
目录下,同时下载 refined training poses。
3. 应用案例和最佳实践
数据预处理
- 对于 ZJU-MoCap 数据集,运行以下命令进行预处理:
cd scripts/prepare_zju-mocap
python prepare_dataset.py --cfg $SCENE.yaml
- 对于 PeopleSnapshot 数据集,运行以下命令进行预处理:
cd scripts/prepare_snapshot
python prepare_dataset.py --cfg $SCENE.yaml
训练模型
- 对于 ZJU-MoCap 数据集,运行以下命令开始训练:
python train.py --cfg exps/zju-mocap_$SCENE.yaml
- 对于 PeopleSnapshot 数据集,运行以下命令开始训练:
python train.py --cfg exps/snapshot_$SCENE.yaml
渲染和评估
- 使用以下命令进行视图合成:
python eval.py --cfg exps/zju-mocap_$SCENE.yaml --type view
- 使用以下命令进行姿态合成:
python eval.py --cfg exps/zju-mocap_$SCENE.yaml --type pose
- 进行 360 度自由视角渲染:
python eval.py --cfg exps/zju-mocap_$SCENE.yaml --type freeview
- 使用 MDM 进行姿态渲染:
python eval.py --cfg exps/zju-mocap_$SCENE.yaml --type pose_mdm --pose_path data/mdm_poses/sample.npy
4. 典型生态项目
GoMAvatar 可以与以下项目进行集成和扩展:
- HumanNeRF:用于人体建模和渲染的开源项目。
- MonoHuman:从单目视频中估计人体姿态和形状的开源项目。
以上就是 GoMAvatar 开源项目的最佳实践教程,希望对您的学习和开发有所帮助。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
986
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44