Great Expectations中COMPLETE结果格式的深度解析与实践指南
2025-05-22 21:36:39作者:俞予舒Fleming
背景介绍
Great Expectations作为数据质量验证的强大工具,其核心功能之一是能够对数据集执行各种期望验证并返回详细结果。在实际应用中,我们经常需要获取验证失败的详细记录信息,而不仅仅是简单的通过/失败统计。本文将深入探讨Great Expectations中的结果格式配置,特别是COMPLETE格式的使用技巧和常见问题解决方案。
结果格式概述
Great Expectations提供了多种结果格式选项,用于控制验证结果的详细程度:
- BOOLEAN_ONLY:仅返回验证是否通过
- BASIC:包含基本的统计信息
- SUMMARY:增加部分失败样例
- COMPLETE:提供最完整的结果信息
COMPLETE格式的常见误区
许多开发者在使用COMPLETE格式时会遇到一个典型问题:即使设置了result_format="COMPLETE",结果中仍然缺少预期的unexpected_index_list或unexpected_index_query字段。这通常是因为没有正确配置相关参数。
关键配置参数
要使COMPLETE格式返回完整的失败记录信息,需要特别注意以下参数:
- include_unexpected_rows:设置为True时返回每个失败记录的完整行数据(字典形式)
- return_unexpected_index_query:设置为True时返回可用于查询失败记录的SQL语句
- unexpected_index_column_names:指定作为索引的列名列表
最佳实践方案
对于需要获取所有验证失败记录ID的场景,推荐采用以下配置方式:
checkpoint = gx.Checkpoint(
name="data_quality_check",
validation_definitions=[validation_definition],
result_format={
"result_format": "COMPLETE",
"unexpected_index_column_names": ["id"], # 指定ID列
"partial_unexpected_count": 0,
"exclude_unexpected_values": False,
"include_unexpected_rows": True,
"return_unexpected_index_query": True # 获取查询SQL
}
)
性能考量
在处理大型数据集时,直接返回所有失败记录的ID可能会造成以下问题:
- 结果文件体积过大
- 内存消耗增加
- 网络传输压力
因此,更推荐的做法是:
- 使用
return_unexpected_index_query获取查询语句 - 在数据库端执行该查询获取完整结果
- 分批处理大量数据
实际应用场景
这种配置特别适用于以下场景:
- 数据清洗前的空值检测
- 数据迁移后的完整性验证
- 定期数据质量监控
- 自动化数据管道中的异常处理
总结
Great Expectations的COMPLETE结果格式提供了强大的数据验证细节获取能力,但需要正确配置相关参数才能发挥其全部功能。通过合理设置include_unexpected_rows和return_unexpected_index_query等参数,开发者可以灵活平衡结果详细程度和系统性能,构建高效的数据质量监控体系。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873