HdrHistogram.NET中的Recorder示例解析:高精度延迟测量实践
2025-05-31 14:05:08作者:郜逊炳
概述
HdrHistogram.NET是一个高性能的.NET直方图库,特别适合记录和分析延迟测量数据。本文将通过分析RecorderExample.cs示例代码,深入讲解如何使用HdrHistogram.NET的Recorder功能进行高精度延迟测量。
示例场景
这个示例展示了一个典型的延迟测量场景:在10秒内持续测量创建和关闭数据报套接字(Datagram Socket)操作的耗时,并将结果记录到直方图中。这种模式在性能测试、系统监控等场景中非常常见。
核心组件解析
1. Recorder与Histogram的关系
Recorder是HdrHistogram.NET提供的一个线程安全包装器,它解决了多线程环境下的测量记录问题:
- 线程安全写入:通过
WithThreadSafeWrites()配置,底层使用LongConcurrentHistogram实现 - 线程安全读取:通过
WithThreadSafeReads()配置,返回一个Recorder实例
var recorder = HistogramFactory
.With64BitBucketSize()
.WithValuesFrom(1)
.WithValuesUpTo(TimeStamp.Minutes(10))
.WithPrecisionOf(3)
.WithThreadSafeWrites()
.WithThreadSafeReads()
.Create();
2. 测量记录流程
示例中实现了完整的测量记录流程:
- 初始化阶段:创建日志文件和HistogramLogWriter
- 测量阶段:启动独立线程进行周期性数据记录
- 结果输出阶段:输出百分位分布数据
3. 关键配置参数
- 值范围:
WithValuesFrom(1)到WithValuesUpTo(TimeStamp.Minutes(10)) - 精度:
WithPrecisionOf(3)表示3位有效数字 - 时间单位:使用
TimeStamp类进行时间单位转换
多线程处理机制
示例中巧妙地使用了多线程模式:
- 主线程:执行被测操作并记录延迟
- 输出线程:定期(每秒)从Recorder获取间隔直方图并写入日志
这种分离确保了测量过程不会因日志写入而受到影响。
var outputThread = new Thread(ts => WriteToDisk((Recorder)ts));
outputThread.Start(recorder);
测量循环实现
测量循环是性能测试的核心部分,示例中展示了标准实现模式:
var timer = Stopwatch.StartNew();
do
{
recorder.Record(actionToMeasure);
} while (timer.Elapsed < RunPeriod);
这里使用Stopwatch确保精确控制测试时长,recorder.Record方法封装了被测操作的执行和延迟记录。
数据记录与分析
示例展示了两种数据记录方式:
- 间隔直方图:每秒获取一次快照
- 累积直方图:汇总所有测量结果
var histogram = recorder.GetIntervalHistogram();
accumulatingHistogram.Add(histogram);
结果输出时,使用OutputPercentileDistribution方法生成易于理解的百分位分布报告:
accumulatingHistogram.OutputPercentileDistribution(
Console.Out,
outputValueUnitScalingRatio: OutputScalingFactor.TimeStampToMilliseconds
);
实际应用建议
- 配置选择:根据实际测量范围调整值范围和精度
- 日志策略:考虑使用滚动日志避免单个文件过大
- 错误处理:实际应用中应增加异常处理逻辑
- 资源管理:如示例所示,正确实现IDisposable接口
总结
通过这个示例,我们学习了如何使用HdrHistogram.NET的Recorder功能进行高精度、线程安全的延迟测量。关键点包括:
- Recorder的配置和使用
- 多线程测量架构
- 周期性数据记录策略
- 结果分析和展示
这种模式可以轻松扩展到各种性能测量场景,如API调用延迟、数据库查询时间等,是.NET开发者性能工具箱中的重要工具。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C096
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.55 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
227
95
暂无简介
Dart
727
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
285
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
702
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
442
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19