HdrHistogram.NET中的Recorder示例解析:高精度延迟测量实践
2025-05-31 04:31:00作者:郜逊炳
概述
HdrHistogram.NET是一个高性能的.NET直方图库,特别适合记录和分析延迟测量数据。本文将通过分析RecorderExample.cs示例代码,深入讲解如何使用HdrHistogram.NET的Recorder功能进行高精度延迟测量。
示例场景
这个示例展示了一个典型的延迟测量场景:在10秒内持续测量创建和关闭数据报套接字(Datagram Socket)操作的耗时,并将结果记录到直方图中。这种模式在性能测试、系统监控等场景中非常常见。
核心组件解析
1. Recorder与Histogram的关系
Recorder是HdrHistogram.NET提供的一个线程安全包装器,它解决了多线程环境下的测量记录问题:
- 线程安全写入:通过
WithThreadSafeWrites()配置,底层使用LongConcurrentHistogram实现 - 线程安全读取:通过
WithThreadSafeReads()配置,返回一个Recorder实例
var recorder = HistogramFactory
.With64BitBucketSize()
.WithValuesFrom(1)
.WithValuesUpTo(TimeStamp.Minutes(10))
.WithPrecisionOf(3)
.WithThreadSafeWrites()
.WithThreadSafeReads()
.Create();
2. 测量记录流程
示例中实现了完整的测量记录流程:
- 初始化阶段:创建日志文件和HistogramLogWriter
- 测量阶段:启动独立线程进行周期性数据记录
- 结果输出阶段:输出百分位分布数据
3. 关键配置参数
- 值范围:
WithValuesFrom(1)到WithValuesUpTo(TimeStamp.Minutes(10)) - 精度:
WithPrecisionOf(3)表示3位有效数字 - 时间单位:使用
TimeStamp类进行时间单位转换
多线程处理机制
示例中巧妙地使用了多线程模式:
- 主线程:执行被测操作并记录延迟
- 输出线程:定期(每秒)从Recorder获取间隔直方图并写入日志
这种分离确保了测量过程不会因日志写入而受到影响。
var outputThread = new Thread(ts => WriteToDisk((Recorder)ts));
outputThread.Start(recorder);
测量循环实现
测量循环是性能测试的核心部分,示例中展示了标准实现模式:
var timer = Stopwatch.StartNew();
do
{
recorder.Record(actionToMeasure);
} while (timer.Elapsed < RunPeriod);
这里使用Stopwatch确保精确控制测试时长,recorder.Record方法封装了被测操作的执行和延迟记录。
数据记录与分析
示例展示了两种数据记录方式:
- 间隔直方图:每秒获取一次快照
- 累积直方图:汇总所有测量结果
var histogram = recorder.GetIntervalHistogram();
accumulatingHistogram.Add(histogram);
结果输出时,使用OutputPercentileDistribution方法生成易于理解的百分位分布报告:
accumulatingHistogram.OutputPercentileDistribution(
Console.Out,
outputValueUnitScalingRatio: OutputScalingFactor.TimeStampToMilliseconds
);
实际应用建议
- 配置选择:根据实际测量范围调整值范围和精度
- 日志策略:考虑使用滚动日志避免单个文件过大
- 错误处理:实际应用中应增加异常处理逻辑
- 资源管理:如示例所示,正确实现IDisposable接口
总结
通过这个示例,我们学习了如何使用HdrHistogram.NET的Recorder功能进行高精度、线程安全的延迟测量。关键点包括:
- Recorder的配置和使用
- 多线程测量架构
- 周期性数据记录策略
- 结果分析和展示
这种模式可以轻松扩展到各种性能测量场景,如API调用延迟、数据库查询时间等,是.NET开发者性能工具箱中的重要工具。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
279
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
107
136
暂无简介
Dart
570
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
294
39